c语言sscanf函数的用法是什么
375
2022-09-03
Error: Received a label value of 1 which is outside the valid range of [0, 1)-Python,Keras
由于keras在做二分类损失的时候,激活函数选择的是sigmod,所以此处不能超过1
当选择的损失函数对应的取值超出范围的时候就会报错。
如下合理的loss使用方式供参考:
# 由于此处为二分类问题,此处选择sigmoid作为激活函数out1 = layers.Dense(units=1, activation="sigmoid", name='out1')(features)# 为多分类,此处选择softmax作为激活函数out2 = layers.Dense(units=6, activation="softmax", name='out2')(features)# Received a label value of 1 which is outside the valid range of [0, 1) - Python, Keras# In the last Dense layer you used model.add(Dense(1, activation='softmax')).# Here 1 restricts its value from [0, 1) change its shape to the maximum output label.# For eg your output is from label [0,7) then use model.add(Dense(7, activation='softmax'))def focal_loss(y_true, y_pred): print('focal_loss', y_true, y_pred) return sparse_categorical_focal_loss(y_true, y_pred, gamma=2, from_logits=True)model = tf.keras.Model(inputs=inputs, outputs=[out1, out2])model = create_model(encoding_size)model.compile( optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), loss={'out1': tf.keras.losses.BinaryCrossentropy(), "out2": focal_loss}, loss_weights={'out1': 0.5, "out2": 0.5}, metrics=["accuracy" # tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy"), # tf.keras.metrics.AUC(name="auc") ])
参考:https://stackoverflow.com/questions/44151760/received-a-label-value-of-1-which-is-outside-the-valid-range-of-0-1-python
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~