hdu 1695 GCD (欧拉函数+容斥原理+线性筛法)

网友投稿 310 2022-08-31

hdu 1695 GCD (欧拉函数+容斥原理+线性筛法)

题目:​​Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 7605    Accepted Submission(s): 2801

Problem Description

Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs. Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same. Yoiu can assume that a = c = 1 in all test cases.

Input

The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases. Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.

Output

For each test case, print the number of choices. Use the format in the example.

Sample Input

2 1 3 1 5 1 1 11014 1 14409 9

Sample Output

Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

Source

​​2008 “Sunline Cup” National Invitational Contest​​

在1--b和1--d之间寻找最大公倍数是k的两个数的对数。小技巧:两个区间同时除以k则变成1--b/k和1--d/k中各挑选一个数看有多少对互质,简化了问题。因为1,3和3,1算作同一对,那么我们可以约定Xb/k时就得逐个素因子分解,利用容斥原理求出非互质的情况,再算出互质的数目。为了快速,可以先用线性筛法求出1---maxn的素数,然后再对每个大于b/k的数素因子分解。【线性筛法的时间复杂度:O(n),埃拉托色尼筛法:O(nloglog(n)),下面用到的筛法求欧拉函数就是在埃拉托色尼筛法基础上实现的】

#include #include #include using namespace std;const int maxn=1e6+10;typedef long long LL;LL prime[maxn],top;bool notprime[maxn];void getprime(){ top=0; for(LL i=2;i1)factor[faccnt++]=x;}int euler[100010];void getEuler(){ euler[1] = 1; for(int i = 2;i <= 100000;i++) if(!euler[i]) for(int j = i; j <= 100000;j += i) { if(!euler[j]) euler[j] = j; euler[j] = euler[j]/i*(i-1); }}int main(){ //freopen("cin.txt","r",stdin); getprime(); getEuler(); LL t,ca; LL a,b,c,d,k; LL kb,kd; cin>>t; for(ca=1;ca<=t;ca++){ scanf("%lld%lld%lld%lld%lld",&a,&b,&c,&d,&k); if(k==0||k>b||k>d) { //除以0会出现0x0000005c的错误 printf("Case %lld: 0\n",ca); continue; } if(b>d) swap(b,d); b=b/k; d=d/k; LL ans=0; for(int i=1;i<=b;i++){ ans+=euler[i]; } for(int i=b+1;i<=d;i++){ resolve(i); LL q1=0; for(int j=1;j<(1<

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:直播20小时只卖出两双鞋?百年品牌为了营销,脸都不要了!(直播卖鞋好卖吗)
下一篇:hdu 3400 Line belt(多重三分)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~