poj 3268 Silver Cow Party(单源最短路径Dijkstra·最小环)

网友投稿 271 2022-08-31

poj 3268 Silver Cow Party(单源最短路径Dijkstra·最小环)

题目:​​Cow Party​​

Time Limit: 2000MS

 

Memory Limit: 65536KB

 

64bit IO Format: %I64d & %I64u

​​Submit​​​ ​​Status​​

Description

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input

Line 1: Three space-separated integers, respectively:  N,  M, and  X Lines 2..  M+1: Line  i+1 describes road  i with three space-separated integers:  Ai,  Bi, and  Ti. The described road runs from farm  Ai to farm  Bi, requiring  Ti time units to traverse.

Output

Line 1: One integer: the maximum of time any one cow must walk.

Sample Input

4 8 2 1 2 4 1 3 2 1 4 7 2 1 1 2 3 5 3 1 2 3 4 4 4 2 3

Sample Output

10

Hint

Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

终点给出,是一个定点。所有的牛犊都会到达该点并且由通过不同的道路回到原点。由此想到单源最短路径,把终点看作源点S,但是怎么回去呢?看了一个大神的博客,矩阵转置(第一次自己转置都写错了||-_-)。效果:(1,2) (2,7) (7,4)  --> (2,1) (7,2) (4,7) means (4,7) (7,2) (2,1)  起点和终点的地位互换!这样再一次用Dijkstra或者spfa等算法求出回家的最短路径就构成了环路。

关于矩阵转置举个例子:

for(int i=0;i<4;i++){

for(int j=0;j<=i;j++){

swap(a.m[i][j],a.m[j][i]);

}

}

不是:

for(int i=0;i<4;i++){

for(int j=0;j<4;j++){

swap(a.m[i][j],a.m[j][i]);

}

}

来看看效果:

#include #include #include using namespace std;struct matrie{ int m[4][4];};matrie a={1,2,3,4,7,3,5,5,6,6,6,6,0,0,0,0};void show(){ cout<<"show: \n"; for(int i=0;i<4;i++){ for(int j=0;j<4;j++){ cout<

0 0:

show:

1 2 3 4

7 3 5 5

6 6 6 6

0 0 0 0

1 0:

show:

1 7 3 4

2 3 5 5

6 6 6 6

0 0 0 0

1 1:

show:

1 7 3 4

2 3 5 5

6 6 6 6

0 0 0 0

2 0:

show:

1 7 6 4

2 3 5 5

3 6 6 6

0 0 0 0

2 1:

show:

1 7 6 4

2 3 6 5

3 5 6 6

0 0 0 0

2 2:

show:

1 7 6 4

2 3 6 5

3 5 6 6

0 0 0 0

3 0:

show:

1 7 6 0

2 3 6 5

3 5 6 6

4 0 0 0

3 1:

show:

1 7 6 0

2 3 6 0

3 5 6 6

4 5 0 0

3 2:

show:

1 7 6 0

2 3 6 0

3 5 6 0

4 5 6 0

3 3:

show:

1 7 6 0

2 3 6 0

3 5 6 0

4 5 6 0

是的,就是这样。

Dijkstra:基于贪心的思想。不足之处在于不能有负边,用于求解单源最短路径问题。这里没有负边问题,所以我就用它吧。

#include #include #include #include using namespace std;const int maxn=1005,INF=0x3f3f3f3f;int dis1[maxn],dis2[maxn],map[maxn][maxn],pre[maxn];int n,m,s;bool p[maxn];void Dijkstra(int dis[]){ memset(p,0,sizeof(p)); for(int i=1;i<=n;i++){ if(i!=s){ dis[i]=map[s][i]; pre[i]=s; } else pre[i]=0; } dis[s]=0; p[s]=1; for(int i=1;idis[k]+map[k][j]){ //利用最近的点更新其他点的距离 dis[j]=dis[k]+map[k][j]; pre[j]=k; } } }}void trans(){ for(int i=1;i<=n;i++){ for(int j=1;j<=i;j++){ swap(map[i][j],map[j][i]); } }}int main(){ //freopen("cin.txt","r",stdin); while(cin>>n>>m>>s){ int a,b,c; memset(map,0x3f,sizeof(map)); for(int i=1;i<=n;i++) map[i][i]=0; while(m--){ scanf("%d%d%d",&a,&b,&c); if(a!=b&&map[a][b]>c)map[a][b]=c; } Dijkstra(dis1); trans(); Dijkstra(dis2); int ans=0; for(int i=1;i<=n;i++){ if(i!=s)ans=max(ans,dis1[i]+dis2[i]); } printf("%d\n",ans); } return 0;}

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:不创新,无未来,这里不仅有营销新玩法,更有营销新机会!(()让精准营销成为可能)
下一篇:hdu 1217 Arbitrage(floyd 每对顶点间的“最短距离”)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~