hdu 1588 Gauss Fibonacci(矩阵乘法)

网友投稿 249 2022-08-31

hdu 1588 Gauss Fibonacci(矩阵乘法)

题目:​​Fibonacci

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2851    Accepted Submission(s): 1181

Problem Description

Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very clever boy. So if you wanna me be your GF, you should solve the problem called GF~. " How good an opportunity that Gardon can not give up! The "Problem GF" told by Angel is actually "Gauss Fibonacci". As we know ,Gauss is the famous mathematician who worked out the sum from 1 to 100 very quickly, and Fibonacci is the crazy man who invented some numbers. Arithmetic progression: g(i)=k*i+b; We assume k and b are both non-nagetive integers. Fibonacci Numbers: f(0)=0 f(1)=1 f(n)=f(n-1)+f(n-2) (n>=2) The Gauss Fibonacci problem is described as follows: Given k,b,n ,calculate the sum of every f(g(i)) for 0<=i

Input

The input contains serveral lines. For each line there are four non-nagetive integers: k,b,n,M Each of them will not exceed 1,000,000,000.

Output

For each line input, out the value described above.

Sample Input

2 1 4 100 2 0 4 100

Sample Output

21 12

Author

DYGG

Source

​​HDU “Valentines Day” Open Programming Contest 2007-02-14​​

推导:

所以计算过程中涉及到了两个不同规模的矩阵。当然也可以用一种大矩阵表示两种不同的小矩阵,在矩阵计算中控制好边界即可:

#include #include using namespace std;typedef long long LL;struct matrie1{ LL m[2][2];};struct matrie2{ LL m[4][4];};matrie1 A={ 0,1, 1,1,};matrie1 AI={ 1,0, 0,1};matrie2 B={0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1};matrie2 BI={1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1};int k,b,n,mod;matrie1 multi1(matrie1 a,matrie1 b){ matrie1 q; for(int i=0;i<2;i++){ for(int j=0;j<2;j++){ q.m[i][j]=0; for(int k=0;k<2;k++){ q.m[i][j]+=a.m[i][k]*b.m[k][j]%mod; } q.m[i][j]%=mod; } } return q;}matrie1 pow1(int k){ matrie1 q=AI,tmp=A; while(k){ if(k&1)q=multi1(q,tmp); tmp=multi1(tmp,tmp); k>>=1; } return q;}matrie2 multi2(matrie2 a,matrie2 b){ matrie2 q; for(int i=0;i<4;i++){ for(int j=0;j<4;j++){ q.m[i][j]=0; for(int k=0;k<4;k++){ q.m[i][j]+=a.m[i][k]*b.m[k][j]%mod; } q.m[i][j]%=mod; } } return q;}matrie2 pow2(int k){ matrie2 q=BI,tmp=B; while(k){ if(k&1)q=multi2(q,tmp); tmp=multi2(tmp,tmp); k>>=1; } return q;}int main(){ //freopen("cin.txt","r",stdin); while(~(scanf("%d %d %d %d",&k,&b,&n,&mod))){ matrie1 R=pow1(k); for(int i=0;i<2;i++){ for(int j=0;j<2;j++)B.m[i][j]=R.m[i][j]; } matrie2 BN=pow2(n); matrie1 B01; for(int i=0;i<2;i++){ for(int j=2;j<4;j++)B01.m[i][j-2]=BN.m[i][j]; } matrie1 Ab=pow1(b); matrie1 res=multi1(Ab,B01); printf("%d\n",res.m[0][1]%mod); } return 0;}

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:vivo营销亮相金投赏,终端媒体分享年轻沟通“秘笈”!(vivo公关)
下一篇:hdu 5018 Revenge of Fibonacci(模拟)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~