POJ 2104 K-th Number (划分树 / 主席树)
Description
You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment. That is, given an array a[1…n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: “What would be the k-th number in a[i…j] segment, if this segment was sorted?” For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2…5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.
Input
The first line of the input file contains n — the size of the array, and m — the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000). The second line contains n different integer numbers not exceeding 10^9 by their absolute values — the array for which the answers should be given. The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).
Output
For each question output the answer to it — the k-th number in sorted a[i…j] segment.
Sample Input
7 31 5 2 6 3 7 42 5 34 4 11 7 3
Sample Output
563
题意
静态查询区间第 k 小的数。
思路
【划分树/主席树】 的基本应用,以下附模板。
AC 代码
划分树
#include #include#includeusing namespace std;typedef __int64 LL;const int maxn=1e5+10;int tree[20][maxn]; // 每层每个位置的值int sorted[maxn]; // 已经排序好的数int toleft[20][maxn]; // 第 i 层从 1-j 有多少个数被划分到了左边void build(int l,int r,int dep){ if(l==r)return; int mid = (l+r)>>1; int same = mid-l+1; // 等于中间值且被划分到左边数的个数 for(int i=l; i<=r; i++) { if(tree[dep][i]0) tree[dep+1][lpos++]=tree[dep][i],same--; else tree[dep+1][rpos++]=tree[dep][i]; toleft[dep][i]=toleft[dep][l-1]+lpos-l; } build(l,mid,dep+1); build(mid+1,r,dep+1);}int query(int L,int R,int l,int r,int dep,int k){ if(l==r)return tree[dep][l]; int mid = (L+R)>>1; int cnt = toleft[dep][r]-toleft[dep][l-1]; if(cnt>=k) { int newl = L+toleft[dep][l-1]-toleft[dep][L-1]; int newr = newl+cnt-1; return query(L,mid,newl,newr,dep+1,k); } else { int newr = r +toleft[dep][R]-toleft[dep][r]; int newl = newr-(r-l-cnt); return query(mid+1,R,newl,newr,dep+1,k-cnt); }}int main(){ ios::sync_with_stdio(false); int n,m; while(cin>>n>>m) { memset(tree,0,sizeof(tree)); for(int i=1; i<=n; i++) { cin>>tree[0][i]; sorted[i]=tree[0][i]; } sort(sorted+1,sorted+n+1); build(1,n,0); int s,t,k; while(m--) { cin>>s>>t>>k; cout<主席树
#include#include#include#includeusing namespace std;typedef __int64 LL;const int maxn = 2000000;int a[maxn],b[maxn];int sum[maxn];int ls[maxn];int rs[maxn];int rk[maxn];int tot;void build(int &o,int l,int r){ o=++tot; sum[o]=0; if(l==r)return; int mid = (l+r)>>1; build(ls[o],l,mid); build(rs[o],mid+1,r);}void update(int &o,int l,int r,int last,int p){ o = ++tot; ls[o]=ls[last]; rs[o]=rs[last]; sum[o]=sum[last]+1; if(l==r)return; int mid = (l+r)>>1; if(p<=mid)update(ls[o],l,mid,ls[last],p); else update(rs[o],mid+1,r,rs[last],p);}int query(int L,int R,int l,int r,int k){ if(L==R)return L; int mid = (L+R)>>1; int cnt = sum[ls[r]]-sum[ls[l]]; if(k<=cnt)return query(L,mid,ls[l],ls[r],k); else return query(mid+1,R,rs[l],rs[r],k-cnt);}int main(){ ios::sync_with_stdio(false); int n,m; while(cin>>n>>m) { tot=0; for(int i=1; i<=n; i++) cin>>a[i],b[i]=a[i]; sort(b+1,b+n+1); int sz = unique(b+1,b+n+1)-(b+1); build(rk[0],1,sz); for(int i=1; i<=n; i++) { a[i] = lower_bound(b+1,b+n+1,a[i])-b; update(rk[i],1,sz,rk[i-1],a[i]); } while(m--) { int l,r,k; cin>>l>>r>>k; cout<
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
暂时没有评论,来抢沙发吧~