HDU 1159:Common Subsequence

网友投稿 213 2022-08-28

HDU 1159:Common Subsequence

Common Subsequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 30952    Accepted Submission(s): 14010

Problem Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = another sequence Z = is a subsequence of X if there exists a strictly increasing sequence of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = is a subsequence of X = with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.  The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc abfcab programming contest abcd mnp

Sample Output

4 2 0

Source

​​Southeastern Europe 2003​​

Recommend

Ignatius   |   We have carefully selected several similar problems for you:   ​​1087​​​  ​​​1176​​​  ​​​1003​​​  ​​​1058​​​  ​​​1069​​

迷失在幽谷中的鸟儿,独自飞翔在这偌大的天地间,却不知自己该飞往何方……

#include #include #include using namespace std; char s1[1000],s2[1000]; int dp[1000][1000]; int len1,len2; void LCS() { int i,j; memset(dp,0,sizeof(dp)); for(i = 1; i<=len1; i++) { for(j = 1; j<=len2; j++) { if(s1[i-1] == s2[j-1]) dp[i][j] = dp[i-1][j-1]+1; else dp[i][j] = max(dp[i-1][j],dp[i][j-1]); } } } int main() { while(~scanf("%s%s",s1,s2)) { len1 = strlen(s1); len2 = strlen(s2); LCS(); printf("%d\n",dp[len1][len2]); } return 0; }

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:YTU 2402: Common Subsequence
下一篇:反射营销,像做题一样可以验算反推的营销新方法!(什么是推销接近?推销接近方法技巧有哪些?)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~