Java ArrayList.add 的实现方法

网友投稿 232 2023-07-17

Java ArrayList.add 的实现方法

ArrayList是平时相当常用的List实现, 其中boolean add(E e) 的实现比较直接:

/**

* Appends the specified element to the end of this list.

*

* @param e element to be appended to this list

* @return true (as specified by {@link Collection#add})

*/

public boolean add(E e) {

ensureCapacityInternal(size + 1); // Increments modCount!!

elementData[size++] = e;

return true;

}

有时候也使用 void add(int index, E element) 把元素插入到指定的index上. 在JDK中的实现是:

/**

* Inserts the specified element at the specified position in this

* list. Shifts the element currently at that position (if any) and

* any subsequent elements to the right (adds one to their indices).

*

* @param index index at which the specified element is to be inserted

* @param element element to be inserted

* @throws IndexOutOfBoundsException {@inheritDoc}

*/

public void add(int index, E element) {

rangeCheckForAdd(index);

ensureCapacityInternal(size + 1); // Increments modCount!!

System.arraycopy(elementData, index, elementData, index + 1,

size - index);

elementData[index] = element;

size++;

}

略有差别, 需要保证当前elementData 数组容量够用, 然后把从index处一直到尾部的数组元素都向后挪一位. 最后把要插入的元素赋给数组的index处.

一直以来, 我都认为 System.arraycopy 这个native方法, 它的c++实现是调用底层的memcpy, 直接方便, 效率也没问题.

但今天看了openJDK的源码发现并非如此.

以openJDK8u60 为例, 在objArrayKlass.cpp 中:

void ObjArrayKlass::copy_array(arrayOop s, int src_pos, arrayOop d,

int dst_pos, int length, TRAPS) {

assert(s->is_objArray(), "must be obj array");

if (!d->is_objArray()) {

THROW(vmSymbols::java_lang_ArrayStoreException());

}

// Check is all offsets and lengths are non negative

if (src_pos < 0 || dst_pos < 0 || length < 0) {

THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException());

}

// Check if the ranges are valid

if ( (((unsigned int) length + (unsigned int) src_pos) > (unsigned int) s->length())

|| (((unsigned int) length + (unsigned int) dst_posnTAXZh) > (unsigned int) d->length()) ) {

THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException());

}

// Special case. Boundary cases must be checked first

// This allows the following call: copy_array(s, s.length(), d.length(), 0).

// This is correct, since the position is supposed to be an 'in between point', i.e., s.length(),

// points to the right of the last element.

if (length==0) {

return;

}

if (UseCompressedOops) {

narrowOop* const src = objArrayOop(s)->obj_at_addr(src_pos);

narrowOop* const dst = objArrayOop(d)->obj_at_addr(dst_pos);

do_copy(s, src, d, dst, length, CHECK);

} else {

oop* const src = objArrayOop(s)->obj_at_addr(src_pos);

oop* const dst = objArrayOop(d)->obj_at_addr(dst_pos);

do_copy (s, src, d, dst, length, CHECK);

}

}

可以看到copy_array在做了各种检查之后, 最终copy的部分在do_copy方法中, 而这个方法实现如下:

// Either oop or narrowOop depending on UseCompressedOops.

template void ObjArrayKlass::do_copy(arrayOop s, T* src,

arrayOop d, T* dst, int length, TRAPS) {

BarrierSet* bs =nTAXZh Universe::heap()->barrier_set();

// For performance reasons, we assume we are that the write barrier we

// are using has optimized modes for arrays of references. At least one

// of the asserts below will fail if this is not the case.

assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");

assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");

if (s == d) {

// since source and destination are equal we do not need conversion checks.

assert(length > 0, "sanity check");nTAXZh

bs->write_ref_array_pre(dst, length);

Copy::conjoint_oops_atomic(src, dst, length);

} else {

// We have to make sure all elements conform to the destination array

Klass* bound = ObjArrayKlass::cast(d->klass())->element_klass();

Klass* stype = ObjArrayKlass::cast(s->klass())->element_klass();

if (stype == bound || stype->is_subtype_of(bound)) {

// elements are guaranteed to be subtypes, so no check necessary

bs->write_ref_array_pre(dst, length);

Copy::conjoint_oops_atomic(src, dst, length);

} else {

// slow case: need individual subtype checks

// note: don't use obj_at_put below because it includes a redundant store check

T* from = src;

T* end = from + length;

for (T* p = dst; from < end; from++, p++) {

// XXX this is going to be slow.

T element = *from;

// even slower now

bool element_is_null = oopDesc::is_null(element);

oop new_val = element_is_null ? oop(NULL)

: oopDesc::decode_heap_oop_not_null(element);

if (element_is_null ||

(new_val->klass())->is_subtype_of(bound)) {

bs->write_ref_field_pre(p, new_val);

*p = element;

} else {

// We must do a barrier to cover the partial copy.

const size_t pd = pointer_delta(p, dst, (size_t)heapOopSize);

// pointer delta is scaled to number of elements (length field in

// objArrayOop) which we assume is 32 bit.

assert(pd == (size_t)(int)pd, "length field overflow");

bs->write_ref_array((HeapWord*)dst, pd);

THROW(vmSymbols::java_lang_ArrayStoreException());

return;

}

}

}

}

bs->write_ref_array((HeapWord*)dst, length);

}

可以看到, 在设定了heap barrier之后, 元素是在for循环中被一个个挪动的. 做的工作比我想象的要多.

如果有m个元素, 按照给定位置, 使用ArrayList.add(int,E)逐个插入到一个长度为n的ArrayList中, 复杂度应当是O(m*n), 或者O(m*(m+n)), 所以, 如果m和n都不小的话, 效率确实是不高的.

效率高一些的方法是, 建立m+n长度的数组或ArrayList, 在给定位置赋值该m个要插入的元素, 其他位置依次赋值原n长度List的元素. 这样时间复杂度应当是O(m+n).

还有, 在前面的实现中, 我们可以看到有对ensureCapacityInternal(int) 的调用. 这个保证数组容量的实现主要在:

/**

* Increases the capacity to ensure that it can hold at least the

* number of elements specified by the minimum capacity argument.

*

* @param minCapacity the desired minimum capacity

*/

private void grow(int minCapacity) {

// overflow-conscious code

int oldCapacity = elementData.length;

int newCapacity = oldCapacity + (oldCapacity >> 1);

if (newCapacity - minCapacity < 0)

newCapacity = minCapacity;

if (newCapacity - MAX_ARRAY_SIZE > 0)

newCapacity = hugeCapacity(minCapacity);

// minCapacity is usually close to size, so this is a win:

elementData = Arrays.copyOf(elementData, newCapacity);

}

大家知道由于效率原因, ArrayList容量增长不是正好按照要求的容量minCapacity来设计的, 新容量计算的主要逻辑是: 如果要求容量比当前容量的1.5倍大, 就按照要求容量重新分配空间; 否则按当前容量1.5倍增加. 当然不能超出Integer.MAX_VALUE了. oldCapacity + (oldCapacity >> 1) 实际就是当前容量1.5倍, 等同于(int) (oldCapacity * 1.5), 但因这段不涉及浮点运算只是移位, 显然效率高不少.

所以如果ArrayList一个一个add元素的话, 容量是在不够的时候1.5倍增长的. 关于1.5这个数字, 或许是觉得2倍增长太快了吧. 也或许有实验数据的验证支撑.

关于这段代码中出现的Arrays.copyOf这个方法, 实现的是重新分配一段数组, 把elementData赋值给新分配的空间, 如果新分配的空间大, 则后面赋值null, 如果分配空间比当前数组小则截断. 底层还是调用的System.arraycopy.

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:关于Spring项目对JDBC的支持与基本使用详解
下一篇:springcloud Zuul动态路由的实现
相关文章

 发表评论

暂时没有评论,来抢沙发吧~