java查找图中两点之间所有路径

网友投稿 227 2023-07-11

java查找图中两点之间所有路径

本文实例为大家分享了java查找图中两点之间所有路径的具体代码,基于邻接表,供大家参考,具体内容如下

图类:

package graph1;

import java.util.LinkedList;

import graph.Graph.edgeNode;

public class Graph {

class EdgeNode{

int adjvex;

EdgeNode nextEdge;

}

class VexNode{

int data;

EdgeNode firstEdge;

boolean isVisted;

public boolean isVisted() {

return isVisted;

}

public void setVisted(boolean isVisted) {

this.isVisted = isVisted;

}

}

VexNode[] vexsarray ;

int[] visited = new int[100];

boolean[] isVisited = new boolean[100];

public void linkLast(EdgeNode target,EdgeNode node) {

while (target.nextEdge!=null) {

target=target.nextEdge;

}

target.nextEdge=node;

}

public int getPosition(int data) {

for(int i=0;i

if (data==vexsarray[i].data) {

return i;

}

}

return -1;

}

public void buildGraph(int[] vexs,int[][] edges ) {

int vLen = vexs.length;

int eLen = edges.length;

vexsarray = new VexNode[vLen];

for(int i=0;i

vexsarray[i] = new VexNode();

vexsarray[i].data = vexs[i];

vexsarray[i].firstEdge = null;

}

for(int i=0;i

int a = edges[i][0];

int b = edges[i][1];

int start = getPosition(a);

int end = getPosition(b);

EdgeNode edgeNode = new EdgeNode();

edgeNode.adjvex = end;

if (vexsarray[start].firstEdge == null) {

vexsarray[start].firstEdge = edgeNode;

} else {

linkLast(vexsarray[start].firstEdge,edgeNode);

}

}

}

public void printGraph() {

for(int i=0;i

System.out.printf("%d--",vexsarray[i].data);

EdgeNode node = vexsarray[i].firstEdge;

while (node!=null) {

System.out.printf("%d(%d)--",node.adjvex,vexsarray[node.adjvex].data);

node = node.nextEdge;

}

System.out.println("\n");

}

}

算法:

package graph1;

import java.util.HashMap;

import java.util.Map;

import java.util.Stack;

import javax.swing.plaf.synth.SynthStyle;

import graph1.Graph.EdgeNode;

public class FindALlPath {

//代表某节点是否在stack中,避免产生回路

public Map states=new HashMap();

//存放放入stack中的节点

public Stack stack=new Stack();

//打印stack中信息,即路径信息

public void printPath(){

StringBuilder sb=new StringBuilder();

for(Integer i :stack){

sb.append(i+"->");

}

sb.delete(sb.length()-2,sb.length());

System.out.println(sb.toString());

}

//得到x的邻接点为y的后一个邻接点位置,为-1说明没有找到

public int getNextNode(Graph graph,int x,int y){

int next_node=-1;

EdgeNode edge=graph.vexsarray[x].firstEdge;

if(null!=edge&&y==-1){

int n=edge.adjvex;

//元素还不在stack中

if(!states.get(n))

return n;

return -1;

}

while(null!=edge){

//节点未访问

if(edge.adjvex==y){

if(null!=edge.nextEdge){

next_node=edge.nextEdge.adjvex;

if(!states.get(next_node))

return next_node;

}

else

return -1;

}

edge=edge.nextEdge;

}

return -1;

}

public void visit(Graph graph,int x,int y){

//初始化所有节点在stack中的情况

for(int PedUqHi=0;i

states.put(i,false);

}

//stack top元素

int top_node;

//存放当前top元素已经访问过的邻接点,若不存在则置-1,此时代表访问该top元素的第一个邻接点

int adjvex_node=-1;

int next_node;

stack.add(x);

states.put(x,true);

while(!stack.isEmpty()){

top_node=stack.peek();

//找到需要访问的节点

if(top_node==y){

//打印该路径

printPath();

adjvex_node=stack.pop();

states.put(adjvex_node,false);

}

else{

//访问top_node的第advex_node个邻接点

next_node=getNextNode(graph,top_node,adjvex_node);

if(next_node!=-1){

stack.push(next_node);

//置当前节点访问状态为已在stack中

states.put(next_node,true);

//临接点重置

adjvex_node=-1;

}

//不存在临接点,将stack top元素退出

elsePedUqH{

//当前已经访问过了top_node的第adjvex_node邻接点

adjvex_node=stack.pop();

//不在stack中

states.put(adjvex_node,false);

}

}

}

}

}

测试类:

package graph1;

import java.util.Iterator;

import graph1.Graph.VexNode;

public class Tset2 {

public static void main(String[] args) {

int[] vexs = {0,1,2,3,4};

int[][] edges = {

{0,1},

{0,3},

{1,0},

{1,2},

{2,1},

{2,3},

{2,4},

{3,0},

{3,2},

{3,4},

{4,2},

{4,3},

};

Graph graph = new Graph();

graph.buildGraph(vexs, edges);

graph.printGraph();

FindALlPath findALlPath = new FindALlPath();

findALlPath.visit(graph, 4, 0);

}

}

if (data==vexsarray[i].data) {

return i;

}

}

return -1;

}

public void buildGraph(int[] vexs,int[][] edges ) {

int vLen = vexs.length;

int eLen = edges.length;

vexsarray = new VexNode[vLen];

for(int i=0;i

vexsarray[i] = new VexNode();

vexsarray[i].data = vexs[i];

vexsarray[i].firstEdge = null;

}

for(int i=0;i

int a = edges[i][0];

int b = edges[i][1];

int start = getPosition(a);

int end = getPosition(b);

EdgeNode edgeNode = new EdgeNode();

edgeNode.adjvex = end;

if (vexsarray[start].firstEdge == null) {

vexsarray[start].firstEdge = edgeNode;

} else {

linkLast(vexsarray[start].firstEdge,edgeNode);

}

}

}

public void printGraph() {

for(int i=0;i

System.out.printf("%d--",vexsarray[i].data);

EdgeNode node = vexsarray[i].firstEdge;

while (node!=null) {

System.out.printf("%d(%d)--",node.adjvex,vexsarray[node.adjvex].data);

node = node.nextEdge;

}

System.out.println("\n");

}

}

算法:

package graph1;

import java.util.HashMap;

import java.util.Map;

import java.util.Stack;

import javax.swing.plaf.synth.SynthStyle;

import graph1.Graph.EdgeNode;

public class FindALlPath {

//代表某节点是否在stack中,避免产生回路

public Map states=new HashMap();

//存放放入stack中的节点

public Stack stack=new Stack();

//打印stack中信息,即路径信息

public void printPath(){

StringBuilder sb=new StringBuilder();

for(Integer i :stack){

sb.append(i+"->");

}

sb.delete(sb.length()-2,sb.length());

System.out.println(sb.toString());

}

//得到x的邻接点为y的后一个邻接点位置,为-1说明没有找到

public int getNextNode(Graph graph,int x,int y){

int next_node=-1;

EdgeNode edge=graph.vexsarray[x].firstEdge;

if(null!=edge&&y==-1){

int n=edge.adjvex;

//元素还不在stack中

if(!states.get(n))

return n;

return -1;

}

while(null!=edge){

//节点未访问

if(edge.adjvex==y){

if(null!=edge.nextEdge){

next_node=edge.nextEdge.adjvex;

if(!states.get(next_node))

return next_node;

}

else

return -1;

}

edge=edge.nextEdge;

}

return -1;

}

public void visit(Graph graph,int x,int y){

//初始化所有节点在stack中的情况

for(int PedUqHi=0;i

states.put(i,false);

}

//stack top元素

int top_node;

//存放当前top元素已经访问过的邻接点,若不存在则置-1,此时代表访问该top元素的第一个邻接点

int adjvex_node=-1;

int next_node;

stack.add(x);

states.put(x,true);

while(!stack.isEmpty()){

top_node=stack.peek();

//找到需要访问的节点

if(top_node==y){

//打印该路径

printPath();

adjvex_node=stack.pop();

states.put(adjvex_node,false);

}

else{

//访问top_node的第advex_node个邻接点

next_node=getNextNode(graph,top_node,adjvex_node);

if(next_node!=-1){

stack.push(next_node);

//置当前节点访问状态为已在stack中

states.put(next_node,true);

//临接点重置

adjvex_node=-1;

}

//不存在临接点,将stack top元素退出

elsePedUqH{

//当前已经访问过了top_node的第adjvex_node邻接点

adjvex_node=stack.pop();

//不在stack中

states.put(adjvex_node,false);

}

}

}

}

}

测试类:

package graph1;

import java.util.Iterator;

import graph1.Graph.VexNode;

public class Tset2 {

public static void main(String[] args) {

int[] vexs = {0,1,2,3,4};

int[][] edges = {

{0,1},

{0,3},

{1,0},

{1,2},

{2,1},

{2,3},

{2,4},

{3,0},

{3,2},

{3,4},

{4,2},

{4,3},

};

Graph graph = new Graph();

graph.buildGraph(vexs, edges);

graph.printGraph();

FindALlPath findALlPath = new FindALlPath();

findALlPath.visit(graph, 4, 0);

}

}

vexsarray[i] = new VexNode();

vexsarray[i].data = vexs[i];

vexsarray[i].firstEdge = null;

}

for(int i=0;i

int a = edges[i][0];

int b = edges[i][1];

int start = getPosition(a);

int end = getPosition(b);

EdgeNode edgeNode = new EdgeNode();

edgeNode.adjvex = end;

if (vexsarray[start].firstEdge == null) {

vexsarray[start].firstEdge = edgeNode;

} else {

linkLast(vexsarray[start].firstEdge,edgeNode);

}

}

}

public void printGraph() {

for(int i=0;i

System.out.printf("%d--",vexsarray[i].data);

EdgeNode node = vexsarray[i].firstEdge;

while (node!=null) {

System.out.printf("%d(%d)--",node.adjvex,vexsarray[node.adjvex].data);

node = node.nextEdge;

}

System.out.println("\n");

}

}

算法:

package graph1;

import java.util.HashMap;

import java.util.Map;

import java.util.Stack;

import javax.swing.plaf.synth.SynthStyle;

import graph1.Graph.EdgeNode;

public class FindALlPath {

//代表某节点是否在stack中,避免产生回路

public Map states=new HashMap();

//存放放入stack中的节点

public Stack stack=new Stack();

//打印stack中信息,即路径信息

public void printPath(){

StringBuilder sb=new StringBuilder();

for(Integer i :stack){

sb.append(i+"->");

}

sb.delete(sb.length()-2,sb.length());

System.out.println(sb.toString());

}

//得到x的邻接点为y的后一个邻接点位置,为-1说明没有找到

public int getNextNode(Graph graph,int x,int y){

int next_node=-1;

EdgeNode edge=graph.vexsarray[x].firstEdge;

if(null!=edge&&y==-1){

int n=edge.adjvex;

//元素还不在stack中

if(!states.get(n))

return n;

return -1;

}

while(null!=edge){

//节点未访问

if(edge.adjvex==y){

if(null!=edge.nextEdge){

next_node=edge.nextEdge.adjvex;

if(!states.get(next_node))

return next_node;

}

else

return -1;

}

edge=edge.nextEdge;

}

return -1;

}

public void visit(Graph graph,int x,int y){

//初始化所有节点在stack中的情况

for(int PedUqHi=0;i

states.put(i,false);

}

//stack top元素

int top_node;

//存放当前top元素已经访问过的邻接点,若不存在则置-1,此时代表访问该top元素的第一个邻接点

int adjvex_node=-1;

int next_node;

stack.add(x);

states.put(x,true);

while(!stack.isEmpty()){

top_node=stack.peek();

//找到需要访问的节点

if(top_node==y){

//打印该路径

printPath();

adjvex_node=stack.pop();

states.put(adjvex_node,false);

}

else{

//访问top_node的第advex_node个邻接点

next_node=getNextNode(graph,top_node,adjvex_node);

if(next_node!=-1){

stack.push(next_node);

//置当前节点访问状态为已在stack中

states.put(next_node,true);

//临接点重置

adjvex_node=-1;

}

//不存在临接点,将stack top元素退出

elsePedUqH{

//当前已经访问过了top_node的第adjvex_node邻接点

adjvex_node=stack.pop();

//不在stack中

states.put(adjvex_node,false);

}

}

}

}

}

测试类:

package graph1;

import java.util.Iterator;

import graph1.Graph.VexNode;

public class Tset2 {

public static void main(String[] args) {

int[] vexs = {0,1,2,3,4};

int[][] edges = {

{0,1},

{0,3},

{1,0},

{1,2},

{2,1},

{2,3},

{2,4},

{3,0},

{3,2},

{3,4},

{4,2},

{4,3},

};

Graph graph = new Graph();

graph.buildGraph(vexs, edges);

graph.printGraph();

FindALlPath findALlPath = new FindALlPath();

findALlPath.visit(graph, 4, 0);

}

}

int a = edges[i][0];

int b = edges[i][1];

int start = getPosition(a);

int end = getPosition(b);

EdgeNode edgeNode = new EdgeNode();

edgeNode.adjvex = end;

if (vexsarray[start].firstEdge == null) {

vexsarray[start].firstEdge = edgeNode;

} else {

linkLast(vexsarray[start].firstEdge,edgeNode);

}

}

}

public void printGraph() {

for(int i=0;i

System.out.printf("%d--",vexsarray[i].data);

EdgeNode node = vexsarray[i].firstEdge;

while (node!=null) {

System.out.printf("%d(%d)--",node.adjvex,vexsarray[node.adjvex].data);

node = node.nextEdge;

}

System.out.println("\n");

}

}

算法:

package graph1;

import java.util.HashMap;

import java.util.Map;

import java.util.Stack;

import javax.swing.plaf.synth.SynthStyle;

import graph1.Graph.EdgeNode;

public class FindALlPath {

//代表某节点是否在stack中,避免产生回路

public Map states=new HashMap();

//存放放入stack中的节点

public Stack stack=new Stack();

//打印stack中信息,即路径信息

public void printPath(){

StringBuilder sb=new StringBuilder();

for(Integer i :stack){

sb.append(i+"->");

}

sb.delete(sb.length()-2,sb.length());

System.out.println(sb.toString());

}

//得到x的邻接点为y的后一个邻接点位置,为-1说明没有找到

public int getNextNode(Graph graph,int x,int y){

int next_node=-1;

EdgeNode edge=graph.vexsarray[x].firstEdge;

if(null!=edge&&y==-1){

int n=edge.adjvex;

//元素还不在stack中

if(!states.get(n))

return n;

return -1;

}

while(null!=edge){

//节点未访问

if(edge.adjvex==y){

if(null!=edge.nextEdge){

next_node=edge.nextEdge.adjvex;

if(!states.get(next_node))

return next_node;

}

else

return -1;

}

edge=edge.nextEdge;

}

return -1;

}

public void visit(Graph graph,int x,int y){

//初始化所有节点在stack中的情况

for(int PedUqHi=0;i

states.put(i,false);

}

//stack top元素

int top_node;

//存放当前top元素已经访问过的邻接点,若不存在则置-1,此时代表访问该top元素的第一个邻接点

int adjvex_node=-1;

int next_node;

stack.add(x);

states.put(x,true);

while(!stack.isEmpty()){

top_node=stack.peek();

//找到需要访问的节点

if(top_node==y){

//打印该路径

printPath();

adjvex_node=stack.pop();

states.put(adjvex_node,false);

}

else{

//访问top_node的第advex_node个邻接点

next_node=getNextNode(graph,top_node,adjvex_node);

if(next_node!=-1){

stack.push(next_node);

//置当前节点访问状态为已在stack中

states.put(next_node,true);

//临接点重置

adjvex_node=-1;

}

//不存在临接点,将stack top元素退出

elsePedUqH{

//当前已经访问过了top_node的第adjvex_node邻接点

adjvex_node=stack.pop();

//不在stack中

states.put(adjvex_node,false);

}

}

}

}

}

测试类:

package graph1;

import java.util.Iterator;

import graph1.Graph.VexNode;

public class Tset2 {

public static void main(String[] args) {

int[] vexs = {0,1,2,3,4};

int[][] edges = {

{0,1},

{0,3},

{1,0},

{1,2},

{2,1},

{2,3},

{2,4},

{3,0},

{3,2},

{3,4},

{4,2},

{4,3},

};

Graph graph = new Graph();

graph.buildGraph(vexs, edges);

graph.printGraph();

FindALlPath findALlPath = new FindALlPath();

findALlPath.visit(graph, 4, 0);

}

}

System.out.printf("%d--",vexsarray[i].data);

EdgeNode node = vexsarray[i].firstEdge;

while (node!=null) {

System.out.printf("%d(%d)--",node.adjvex,vexsarray[node.adjvex].data);

node = node.nextEdge;

}

System.out.println("\n");

}

}

算法:

package graph1;

import java.util.HashMap;

import java.util.Map;

import java.util.Stack;

import javax.swing.plaf.synth.SynthStyle;

import graph1.Graph.EdgeNode;

public class FindALlPath {

//代表某节点是否在stack中,避免产生回路

public Map states=new HashMap();

//存放放入stack中的节点

public Stack stack=new Stack();

//打印stack中信息,即路径信息

public void printPath(){

StringBuilder sb=new StringBuilder();

for(Integer i :stack){

sb.append(i+"->");

}

sb.delete(sb.length()-2,sb.length());

System.out.println(sb.toString());

}

//得到x的邻接点为y的后一个邻接点位置,为-1说明没有找到

public int getNextNode(Graph graph,int x,int y){

int next_node=-1;

EdgeNode edge=graph.vexsarray[x].firstEdge;

if(null!=edge&&y==-1){

int n=edge.adjvex;

//元素还不在stack中

if(!states.get(n))

return n;

return -1;

}

while(null!=edge){

//节点未访问

if(edge.adjvex==y){

if(null!=edge.nextEdge){

next_node=edge.nextEdge.adjvex;

if(!states.get(next_node))

return next_node;

}

else

return -1;

}

edge=edge.nextEdge;

}

return -1;

}

public void visit(Graph graph,int x,int y){

//初始化所有节点在stack中的情况

for(int PedUqHi=0;i

states.put(i,false);

}

//stack top元素

int top_node;

//存放当前top元素已经访问过的邻接点,若不存在则置-1,此时代表访问该top元素的第一个邻接点

int adjvex_node=-1;

int next_node;

stack.add(x);

states.put(x,true);

while(!stack.isEmpty()){

top_node=stack.peek();

//找到需要访问的节点

if(top_node==y){

//打印该路径

printPath();

adjvex_node=stack.pop();

states.put(adjvex_node,false);

}

else{

//访问top_node的第advex_node个邻接点

next_node=getNextNode(graph,top_node,adjvex_node);

if(next_node!=-1){

stack.push(next_node);

//置当前节点访问状态为已在stack中

states.put(next_node,true);

//临接点重置

adjvex_node=-1;

}

//不存在临接点,将stack top元素退出

elsePedUqH{

//当前已经访问过了top_node的第adjvex_node邻接点

adjvex_node=stack.pop();

//不在stack中

states.put(adjvex_node,false);

}

}

}

}

}

测试类:

package graph1;

import java.util.Iterator;

import graph1.Graph.VexNode;

public class Tset2 {

public static void main(String[] args) {

int[] vexs = {0,1,2,3,4};

int[][] edges = {

{0,1},

{0,3},

{1,0},

{1,2},

{2,1},

{2,3},

{2,4},

{3,0},

{3,2},

{3,4},

{4,2},

{4,3},

};

Graph graph = new Graph();

graph.buildGraph(vexs, edges);

graph.printGraph();

FindALlPath findALlPath = new FindALlPath();

findALlPath.visit(graph, 4, 0);

}

}

states.put(i,false);

}

//stack top元素

int top_node;

//存放当前top元素已经访问过的邻接点,若不存在则置-1,此时代表访问该top元素的第一个邻接点

int adjvex_node=-1;

int next_node;

stack.add(x);

states.put(x,true);

while(!stack.isEmpty()){

top_node=stack.peek();

//找到需要访问的节点

if(top_node==y){

//打印该路径

printPath();

adjvex_node=stack.pop();

states.put(adjvex_node,false);

}

else{

//访问top_node的第advex_node个邻接点

next_node=getNextNode(graph,top_node,adjvex_node);

if(next_node!=-1){

stack.push(next_node);

//置当前节点访问状态为已在stack中

states.put(next_node,true);

//临接点重置

adjvex_node=-1;

}

//不存在临接点,将stack top元素退出

elsePedUqH{

//当前已经访问过了top_node的第adjvex_node邻接点

adjvex_node=stack.pop();

//不在stack中

states.put(adjvex_node,false);

}

}

}

}

}

测试类:

package graph1;

import java.util.Iterator;

import graph1.Graph.VexNode;

public class Tset2 {

public static void main(String[] args) {

int[] vexs = {0,1,2,3,4};

int[][] edges = {

{0,1},

{0,3},

{1,0},

{1,2},

{2,1},

{2,3},

{2,4},

{3,0},

{3,2},

{3,4},

{4,2},

{4,3},

};

Graph graph = new Graph();

graph.buildGraph(vexs, edges);

graph.printGraph();

FindALlPath findALlPath = new FindALlPath();

findALlPath.visit(graph, 4, 0);

}

}

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:spring boot task实现动态创建定时任务的方法
下一篇:mybatis自动填充时间字段示例代码
相关文章

 发表评论

暂时没有评论,来抢沙发吧~