本篇文章给大家谈谈开源数据平台,以及开源数据优点对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
今天给各位分享开源数据平台的知识,其中也会对开源数据优点进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
开源数据统计平台 -- GoAnalytics
本项目用于移动端的数据统计,项目地址: https://github.com/lt90s/goanalytics 。开源的数据统计countly做的很好,但是基础免费版的功能实在不够看,因此我就决定用go语言来写了这个项目,一来可以在实践中学习go语言,二来也可以开发功能完整的开源平台。该项目正在开发中,欢迎有兴趣的gopher一起参与。
数据存储方面使用的是mongodb。由于数据统计业务几乎不涉及到事务以及严格的一致性场景,而且mongodb的自动分片功能可以支撑较大的数据量。使用大数据的存储组件的话就太过于重了。因此选用mongodb。
业务逻辑整体基于事件的发布订阅。当收到客户端请求, frontend 会对请求数据进行处理,然后发布响应的事件。 backend 收到事件后进行统计处理。
后台展示基于Vue-Admin-Template开发,本人前端能力基本就是依葫芦画瓢,希望有前端大神来开发后台页面,项目地址: https://github.com/lt90s/goanalytics-web
目前客户端API仅有2个。一个是上报 openApp 打开APP时间,一个是上报 usageTime 一次启动使用时长事件。SDK方面也需要移动端的大神开发,感兴趣的大佬可以一起开发。
下面放一点后台页面的效果图:
GoAnalytics是基于go实现的一个数据统计平台,用于统计移动端的数据指标,比如启动次数、用户增长、活跃用户、留存等指标分析。前端数据展示项目是 goanalytics-web 。目前正在积极开发中,欢迎提交新的需求和pull request。
Go版本需要支持module,本地开发测试
cmd/goanalytics_kafka 和 goanalytics_rmq 是分别基于 kafka 和 rocketmq 的发布订阅功能做的数据发布
和订阅处理,横向扩展能力比 local 高。另外由于 rocketmq 还没有原生基于 go 的客户端(原生客户端正在开发中
2.0.0 road map ),可能会存在问题。
项目结构
├── README.md
├── api
│ ├── authentication 用户认证、管理API
│ ├── middlewares GIN 中间件
│ └── router API route
├── cmd
│ ├── account 生成admin账号命令
│ ├── analytic_local 不依赖消息系统的goanalytics
│ ├── goanalytics_kafka 基于kafak的goanalytics
│ ├── goanalytics_rmq 基于rocketmq的goanalytics
│ └── test_data 生成测试数据命令
├── common
│ └── data.go
├── conf 配置
│ └── conf.go
├── event
│ ├── codec 数据编解码
│ └── pubsub 消息发布订阅
├── go.mod
├── go.sum
├── metric 所有的统计指标在这里实现
│ ├── init.go
│ └── user 用户相关指标的实现
├── schedule
│ └── schedule.go 定时任务调度
├── storage 存储模块
│ ├── counter.go 计数器接口
│ ├── data.go
│ └── mongodb 基于mongodb实现的存储及计数器
└── utils
├── date.go
├── date_test.go
├── errors.go
└── key.go

有哪些值得推荐的开源数据管理系统
一、Facebook Scribe
贡献者:Facebook
简介:Scribe是Facebook开源的日志收集系统,在Facebook内部已经得到大量的应用。它能够从各种日志源上收集日志,存储到一个中央存储系统(可以是NFS,分布式文件系统等)上,以便于进行集中统计分析处理。它为日志的“分布式收集,统一处理”提供了一个可扩展的,高容错的方案。当中央存储系统的网络或者机器出现故障时,scribe会将日志转存到本地或者另一个位置,当中央存储系统恢复后,scribe会将转存的日志重新传输给中央存储系统。其通常与Hadoop结合使用,scribe用于向HDFS中push日志,而Hadoop通过MapReduce作业进行定期处理。
Scribe的系统架构
二、Cloudera Flume
贡献者:Cloudera
简介:Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。
Flume提供了从console(控制台)、RPC(Thrift-RPC)、text(文件)、tail(UNIX tail)、syslog(syslog日志系统,支持TCP和UDP等2种模式),exec(命令执行)等数据源上收集数据的能力。
当前Flume有两个版本Flume 0.9X版本的统称Flume-og,Flume1.X版本的统称Flume-ng。由于Flume-ng经过重大重构,与Flume-og有很大不同,使用时请注意区分。
Cloudera Flume构架:
三、logstash
简介:logstash 是一个应用程序日志、事件的传输、处理、管理和搜索的平台。你可以用它来统一对应用程序日志进行收集管理,提供 Web 接口用于查询和统计。他可以对你的日志进行收集、分析,并将其存储供以后使用(如,搜索),您可以使用它。说到搜索,logstash带有一个web界面,搜索和展示所有日志。
微软开源跨平台的数据(库)管理工具——Azure Data Studio
Azure Data Studio是一种跨平台数据库工具,适用于在Windows,MacOS和Linux上使用Microsoft系列内部部署和云数据平台的数据专业人员。此前已发布预览版名称 SQL Operations Studio 下,Azure Data Studio 提供了与 IntelliSense、 代码段、 源代码管理集成和集成的终端的现代编辑器体验。 它在设计时考虑了数据平台用户,内置了查询结果集和可自定义的仪表板。
Github仓库:
官网介绍:
目前官方支持的数据库有SQL Server、Azure SQL 数据库服务器、Azure SQL 数据仓库和pgsql(PostgresSql),其中pgsql是通过插件的方式来实现的。
笔者这里只介绍SQLServer和pgSql的连接和使用,其它的请参考官方文档,文档中详细介绍了各种强大的功能,我这里只是通过截图的方式大致的演示下。下载和安装就不说了,可以到官网下载或者github上下载
安装好后,打开,点击第一个服务器栏
在右侧弹出面板填入你的数据库连接信息,其中上半部分是已经保存的连接,下面是编辑或者添加连接:
其中还有一些高级的配置,暂时用不到
设置好连接后,点击Connect按钮进行连接,连接成功左边服务器列表就会出现,下面截图是我设置好的本地SQL Server和PgSql
选择刚刚创建的数据库
PostgresSql连接需要安装一个PostgresSql扩展,,目前扩展还是技术预览版,但已经可以使用了,记得安装完扩展后重启下工具
后续连接和SQLServer类似就不在介绍了。
这块的功能和SSMS类似
数据导出支持Excel、Json和Xml
你可以根据当前查询的数据来生成各种不同的图表,方便数据专业人员进行数据分析,下面是一些图表的截图,感觉还不错,对专业的数据分析人员还是很有用的
这块功能和Visual Studio Code一样,就不在详细介绍了
扩展安装也是和VSCode类似,但是有些扩展可能需要离线安装,目前扩展还不是丰富,但是已经有很多不错的插件了
主题切换都是延续了VSCode类似的用法,目前扩展中已经有几款比较不错的主题了,你刚刚打开的软件是自带的主题,我上面已经用上了下载好的主题
切换主题也是一样的
笔者只是大致的试用体验了一下,总体来说是非常实用的,跨平台而且功能丰富,界面美观以及不错的数据分析功能,强大的可扩展性(官方提供了自己创建扩展的方法,等应用扩展商店的扩展扩展丰富之后,肯定会让它更加的强大)!
PostgreSQL开源免费企业级数据库用着比较爽的地方有哪些?
1)
开源数据平台,PostgreSQL是通用型数据库。
PG有着丰富的数据类型(数值、字符、时间、布尔、货币、枚举、网络地址、JSONB等等)和索引类型( B-tree、Hash、GiST、SP-GiST 、GIN 和 BRIN等 )。可以存储和计算大多数场景的业务数据
开源数据平台,如 ERP、交易系统、财务系统涉及资金、客户等信息,数据不能丢失且业务逻辑复杂,选择 PostgreSQL 作为数据底层存储,一是可以帮助您在数据一致性前提下提供高可用性,二是可以用简单的编程实现复杂的业务逻辑 。适合各种OLTP和部分OLAP场景。
2),PostgreSQL数据库包含许多第三方插件。
如PostGIS等可以直接在数据库里进行地理位置相关的gis类存储和运算(LBS地理位置相关业务等O2O场景),其他的插件如Pg_stat_statements、uuid-ossp、pg_trgm、btree-gist插件、 pgcrypto加密等插件 。
3),中小型企业快速搭建 数据仓库和数据分析平台(TB级别)
PostgreSQL 提供丰富的数据类型和强大的计算能力,能够帮助您更简单搭建数据库仓库或大数据分析平台,为企业运营加分。
4),冷热分离
针对流水类的大表,PG可以使用分区表,线上保留热数据, 历史 数据存放在分区表里或者OSS等冷数据平台,冷热分离。
5),公有云支持度高如阿里云、腾讯云、华为云等公有云都有对应的RDS-PG产品,开箱即用,并提供技术支持。
OLTP:事务处理是PostgreSQL的本行
OLAP:ANSI SQL兼容,窗口函数,CTE,CUBE等高级分析功能,任意语言写UDF,citus分布式插件
流处理:PipelineDB扩展,Notify-Listen,物化视图,规则系统,灵活的存储过程与函数编写
时序数据:timescaledb时序数据库插件,分区表,BRIN索引
空间数据:PostGIS扩展(杀手锏),内建的几何类型支持,GiST索引。
搜索索引:全文搜索索引足以应对简单场景;丰富的索引类型,支持函数索引,条件索引
NoSQL:JSON,JSONB,XML,HStore原生支持,至NoSQL数据库的外部数据包装器
数据仓库:能平滑迁移至同属Pg生态的GreenPlum,DeepGreen,HAWK等,使用FDW进行ETL
八个最佳的数据中心开源挖掘工具?
数据挖掘,又称为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-DiscoveryinDatabases,简称:KDD)中的一个步骤,是一个挖掘和分析大量数据并从中提取信息的过程。其中一些应用包括市场细分-如识别客户从特定品牌购买特定产品的特征,欺诈检测-识别可能导致在线欺诈的交易模式等。在本文中,昌平电脑培训整理了进行数据挖掘的8个最佳开源工具。
1、Weka
WEKA作为一个公开的数据挖掘工作平台,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及在新的交互式界面上的可视化。
2、RapidMiner
RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。
3、Orange
Orange是一个基于组件的数据挖掘和机器学习软件套装,它的功能即友好,又很强大,快速而又多功能的可视化编程前端,以便浏览数据分析和可视化,基绑定了Python以进行脚本开发。它包含了完整的一系列的组件以进行数据预处理,并提供了数据帐目,过渡,建模,模式评估和勘探的功能。其由C++和Python开发,它的图形库是由跨平台的Qt框架开发。
4、Knime
KNIME(KonstanzInformationMiner)是一个用户友好,智能的,并有丰演的开源的数据集成,数据处理,数据分析和数据勘探平台。
5、jHepWork
jHepWork是一套功能完整的面向对象科学数据分析框架。Jython宏是用来展示一维和二维直方图的数据。该程序包括许多工具,可以用来和二维三维的科学图形进行互动。
6、ApacheMahout
ApacheMahout是ApacheSoftwareFoundation(ASF)开发的一个全新的开源项目,其主要目标是创建一些可伸缩的机器学习算法,供开发人员在Apache在许可下免费使用。该项目已经发展到了它的最二个年头,目前只有一个公共发行版。Mahout包含许多实现,包括集群、分类、CP和进化程序。此外,通过使用ApacheHadoop库,Mahout可以有效地扩展到云中。
7、ELKI
ELKI(EnvironmentforDevelopingKDD-ApplicationsSupportedbyIndex-Structures)主要用来聚类和找离群点。ELKI是类似于weka的数据挖掘平台,用java编写,有GUI图形界面。可以用来寻找离群点。
有哪些开源的PaaS平台?
近期开源的有一个
开源数据平台,Choerodon猪齿鱼
开源数据平台,它是基于DevOps敏捷化和自动化的理念思想开发的企业级数字化服务平台
开源数据平台,主要包含敏捷管理、开发流水线、应用和部署流水线、微服务开发和运营管理等模块。
它基于Kubernetes的容器编排和管理能力,整合DevOps工具链、微服务和移动应用框架,来帮助企业实现敏捷化的应用交付和自动化的运营管理,并提供IoT、支付、数据、智能洞察、企业应用市场等业务组件,来帮助企业聚焦于业务,加速数字化转型。
关于开源数据平台和开源数据优点的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
开源数据平台的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于开源数据优点、开源数据平台的信息别忘了在本站进行查找喔。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
暂时没有评论,来抢沙发吧~