数据平台的建设方案(构建数据平台)

网友投稿 278 2023-03-14

本篇文章给大家谈谈数据平台的建设方案,以及构建数据平台对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享数据平台的建设方案的知识,其中也会对构建数据平台进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

数据平台建设的方案有哪几种?

1、常规数据仓库


数据仓库的重点,是对数据进行整合,同时也是对业务逻辑的一个梳理。数据仓库虽然也可以打包成SAAS那种Cube一类的东西来提升数据的读取性能,但是数据仓库的作用,更多的是为了解决公司的业务问题。


2、敏捷型数据集市


数据集市也是常见的一种方案,底层的数据产品与分析层绑定,使得应用层可以直接对底层数据产品中的数据进行拖拽式分析。数据集市,主要的优势在于对业务数据进行简单的、快速的整合,实现敏捷建模,并且大幅提升数据的处理速度。


3、MPP(大规模并行处理)架构


进入大数据时代以来,传统的主机计算模式已经不能满足需求了,分布式存储和分布式计算才是王道。大家所熟悉的Hadoop MapReduce框架以及MPP计算框架,都是基于这一背景产生。


MPP架构的代表产品,就是Greenplum。Greenplum的数据库引擎是基于Postgresql的,并且通过Interconnnect神器实现了对同一个集群中多个Postgresql实例的高效协同和并行计算。


4、Hadoop分布式系统架构


当然,大规模分布式系统架构,Hadoop依然站在不可代替的关键位置上。雅虎、Facebook、百度、淘宝等国内外大企,最初都是基于Hadoop来展开的。


Hadoop生态体系庞大,企业基于Hadoop所能实现的需求,也不仅限于数据分析,也包括机器学习、数据挖掘、实时系统等。企业搭建大数据系统平台,Hadoop的大数据处理能力、高可靠性、高容错性、开源性以及低成本,都使得它成为首选。


关于数据平台建设的方案有哪几种,环球青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

如何搭建大数据分析平台?

一般的大数据平台从平台搭建到数据分析大概包括以下几个步骤:

Linux系统安装。分布式计算平台或组件安装。

数据导入。数据分析。一般包括两个阶段:数据预处理和数据建模分析。数据预处理是为后面的建模分析做准备,主要工作时从海量数据中提取可用特征,建立大宽表。

数据建模分析是针对预处理提取的特征或数据建模,得到想要的结果。结果可视化及输出API。可视化一般式对结果或部分原始数据做展示。一般有两种情况,行数据展示,和列查找展示。

搭建大数据分析平台到思迈特软件Smartbi看看,在Excel中对数据进行二次加工,告别依赖于IT人员处理的困境;数据有错误也不怕,能够对缺失、不规范的数据进行二次加工,并能将这些数据入库;不受限制的分析思路,按您的想法加工数据;将本地数据和线上数据结合起来分析。

数据分析平台靠不靠谱,来试试Smartbi,思迈特软件Smartbi经过多年持续自主研发,凝聚大量商业智能最佳实践经验,整合了各行业的数据分析和决策支持的功能需求。满足最终用户在企业级报表、数据可视化分析、自助探索分析、数据挖掘建模、AI智能分析等大数据分析需求。

思迈特软件Smartbi个人用户全功能模块长期免费试用
马上免费体验:Smartbi一站式大数据分析平台

有哪些成熟的数据平台建设方案?有案例么?

完整的数据平台建设方案数据平台的建设方案,会涉及以下3个方面:

逻辑架构、应用架构、物理架构数据平台的建设方案

这些其实一个厂商就可以全部完成。下面我说说这数据平台建设方案的3方面具体是什么。

一、逻辑架构

数据源层:

•所有数据的源头。

•来源于多个业务系统。

•数据格式不统一,尚待清洗。

操作数据存储(ODS)层:

•介于业务系统与数据仓库间的隔离层, 通常在该层中完成ETL的大部分工作。

•用于存放从业务系统直接抽取出来的数据。

•通过分步汇总,逐步得到数据仓库所需分析数据。

•ETL中的大部分工作在ODS层完成。

数据仓库层:

•面向各业务主题的、集成的、稳定的、时变的数据。

•通常是汇总的、可冗余的数据。

•主要用于查询。

数据共享层:

•该层通过各类技术手段(如:WebService、WebAPI、ESB等)将数据仓库中的规范数据向外部共享。

•通过数据共享层,实现数据仓库、各业务系统间的联动。

•数据仓库的规范数据对于完善业务系统功能有重大推动作用。

数据分析层:

•单个主题更加集中。

•从各维度视角观察度量数据。

•技术上通常采用各种技术手段(如:列存储)提高查询性能。

二、物理架构

此为举例参考

三、应用架构

图中展示的,其实就是永洪科技他们帮我们梳理出来的数据平台建设方案的架构,而且他们对于我所在的行业也有很深的理解,帮助我们梳理了业务指标,从前期数据平台体系的建设,到后期具体业务场景下业务指标的梳理,都为我们提供了良好的支持。

以上数据平台的建设体系,希望能对题主有所帮助。

大数据治理平台应用建设方案精选「PPT」

【前言】大数据时代到来,我们已被海量数据信息包围

电信:持有大量用户数据,对数据资产的售出,将成为行业的新增长点;

金融:各行业的金融信息流可结合第三方数据,更深入分析客户情况;

制造:从传统制造到互联网+的转型,大数据是核心动力;

政府:大数据已经成为国家战略,政府机构大数据将能够更好的治理 社会 ;

【目录】

大数据治理平台背景

大数据治理平台应用场景分析

大数据治理平台建设方案

【内容】

来源公众号:售前之家

高校实验室大数据开发平台建设方案

大数据人才应用能力成长平台——Tempo Talents,从产业人才需求的视角,通过模式创新、技术创新,为高校大数据人才培养提供从平台、课程内容到教学管理的系统解决方案。平台核心围绕“人才应用能力培养”,以实践为基础,将大数据人才培养所需的知识、技能和方法论三个层面互相融合,核心是通过学生动手实践,培养数据思维及解决问题的能力。


Tempo Talents核心应用场景
Tempo Talents——大数据应用能力成长平台核心面向大数据管理应用、数据科学与大数据技术、交叉学科等大数据相关专业,应用于教学实践、集中实训、在线竞赛、学习交流等场景。

Tempo Talents核心特点
1、DT-CMPA人才能力地图,让学习目标清晰明确
基于大数据行业人才标准及一万多个大数据相关岗位招聘需求解析,定义岗位素质模型,从岗位胜任力出发,规划学习路径和学习路线。基于人才能力地图,高校可以根据自己的学科建设目标、人才培养方向,进行课程体系的规划。而学生也能根据自己的就业目标,规划学习路径,让学生学习更具目标感,清楚学什么、为什么学。


2、专业课程实践资源,满足不同类型教学、实验需求
1)系统课程体系设计,名师专业课程打造
与多位高校老师沟通合作,围绕大数据学习路线的两个基础一个链条,打造9大方向、数百个分类,开发设计1000多个原子课,为高校实践教学提供丰富的课程资源。


2)创新原子课设计,知行合一
Q:何为“原子课”?
A:将课程中涉及的技术点、知识点“原子化”拆分,从基础原理、特性到最终应用,层层递进,用闯关的模式引导学生学习和实践,目的是让学生将每一个知识点吃透、掌握与应用。
基于原子课实现“个性化定制课堂”,老师可根据人才培养需求、学科特色、所用教材在原子课程库中自由挑选、灵活搭配难易度合适的知识点原子,灵活组合,实现“个性化定制课堂”。
3)个性化定制课堂,因材施教
定制化“教学课堂”,自定义教学计划,学生学习行为与评测结果记录,洞察和解析学生学习路径与成果,过程与结果并重,探索教学目标达成的最佳方案。
3、千余个项目应用实践经验,培养学生数据思维及解决问题的能力
基于美林数据上千个行业头部客户大数据建设项目经验,以行业应用为引导,以真实项目案例为基础,内嵌6大行业,100+项目实训,让学生了解行业最新实践与应用场景,通过实战演练提升学生解决实际问题的能力。


对于大数据学习而言,最难的不是Python的一段代码实现、也不是算法原理的掌握,而是在具体业务场景中,将业务问题数据化,利用分析工具、大数据知识去找到解决方案。
针对每一个实训项目,我们都将项目落地全过程进行深度剖析,还原项目落地全流程。将分析方法论、业务问题转化为数学问题的思维方式、知识技能的应用技巧等,全部融入到具体的项目实训案例中,让学生通过实训,掌握方法、提升思维模式。
4、一体化实践运行平台,提供丰富实验实训环境
1)技术创新,实验环境管理智能高效
基于容器与虚拟化技术,提供在线编程、远程命令行、交互式编程、远程桌面等实验实训环境,通过无感知的实验资源分配与回收替代复杂的实验环境管理,让实验管理智能高效。
2)编码式加拖拽式双环境,应用型与开发型兼顾
既有以原理、技术教学为目标的编码环境,也有以应用为目标的拖拽式环境。拖拽式数据可视化分析与机器学习建模平台,以应用为目标,与编码环境充分融合,满足大数据分析应用实践,为交叉学科大数据人才应用能力培养提供环境支持。


5、激发学生学习热情,打造“自驱型”能力成长平台
闯关、竞赛、自主探索的数据游乐场,打破传统的学习模式,打造专业与趣味性融合的学习体验,充分激发学生自主学习热情,打造“自驱型”能力成长平台。

怎么搭建大数据分析平台

数据分析平台就是将公司所有数据平台的建设方案的数据进行进行收集整理数据平台的建设方案,包括系统数据、业务数据等,在统一的数据框架下实现对数据的挖掘和分析,最后通过可视化的手段进行数据展示。

1、通常来说,企业内部的运营和业务系统每天会积累下大量历史数据,一些企业最多是对一些零散的数据进行浅层次的分析,真正的海量数据其实并没有得到真正有效的分析利用。

2、同时,随着系统的不断增加和积累,沉淀在系统深处的数据也更加难以提取和整合,后期的报表展示和可视化分析也就成了空壳应用。

3、一方面它可以汇通企业的各个业务系统,从源头打通数据资源,另一方面也可以实现从数据提取、集成到数据清洗、加工、可视化的一站式分析,帮助企业真正从数据中提取价值,提高企业的经营能力。

搭建大数据分析平台可以到思迈特软件Smartbi了解一下,它在金融行业,全球财富500强的10家国内银行中,有8家选用了思迈特软件Smartbi数据平台的建设方案;国内12家股份制银行,已覆盖8家数据平台的建设方案;国内六大银行,已签约4家;国内排名前十的保险公司已经覆盖6家;国内排名前十的证券公司已经覆盖5家。

数据分析平台靠不靠谱,来试试Smartbi,思迈特软件Smartbi经过多年持续自主研发,凝聚大量商业智能最佳实践经验,整合了各行业的数据分析和决策支持的功能需求。满足最终用户在企业级报表、数据可视化分析、自助探索分析、数据挖掘建模、AI智能分析等大数据分析需求。

思迈特软件Smartbi个人用户全功能模块长期免费试用
马上免费体验:Smartbi一站式大数据分析平台

关于数据平台的建设方案和构建数据平台的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 数据平台的建设方案的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于构建数据平台、数据平台的建设方案的信息别忘了在本站进行查找喔。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:数据平台的设计与实现(数据平台建设要点)
下一篇:传感数据汇聚流程图(传感器收集大数据分析)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~