数据平台方案(数据平台解决方案)

网友投稿 262 2023-03-14

本篇文章给大家谈谈数据平台方案,以及数据平台解决方案对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享数据平台方案的知识,其中也会对数据平台解决方案进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

数据平台建设的方案有哪几种?

1、常规数据仓库


数据仓库的重点,是对数据进行整合,同时也是对业务逻辑的一个梳理。数据仓库虽然也可以打包成SAAS那种Cube一类的东西来提升数据的读取性能,但是数据仓库的作用,更多的是为了解决公司的业务问题。


2、敏捷型数据集市


数据集市也是常见的一种方案,底层的数据产品与分析层绑定,使得应用层可以直接对底层数据产品中的数据进行拖拽式分析。数据集市,主要的优势在于对业务数据进行简单的、快速的整合,实现敏捷建模,并且大幅提升数据的处理速度。


3、MPP(大规模并行处理)架构


进入大数据时代以来,传统的主机计算模式已经不能满足需求了,分布式存储和分布式计算才是王道。大家所熟悉的Hadoop MapReduce框架以及MPP计算框架,都是基于这一背景产生。


MPP架构的代表产品,就是Greenplum。Greenplum的数据库引擎是基于Postgresql的,并且通过Interconnnect神器实现了对同一个集群中多个Postgresql实例的高效协同和并行计算。


4、Hadoop分布式系统架构


当然,大规模分布式系统架构,Hadoop依然站在不可代替的关键位置上。雅虎、Facebook、百度、淘宝等国内外大企,最初都是基于Hadoop来展开的。


Hadoop生态体系庞大,企业基于Hadoop所能实现的需求,也不仅限于数据分析,也包括机器学习、数据挖掘、实时系统等。企业搭建大数据系统平台,Hadoop的大数据处理能力、高可靠性、高容错性、开源性以及低成本,都使得它成为首选。


关于数据平台建设的方案有哪几种,环球青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

大数据分析系统平台方案有哪些?

大数据分析系统平台方案有很多,其中就有广州思迈特软件Smartbi数据平台方案的大数据分析系统平台方案。大数据分析系统平台方案深度洞察用户数据,帮企业用数据驱动产品改进及运营监控,思迈特软件Smartbi是企业级商业智能和大数据分析品牌,经过多年持续自主研发,凝聚大量商业智能最佳实践经验,整合了各行业数据平台方案的数据分析和决策支持的功能需求。满足最终用户在企业级报表、数据可视化分析、自助探索分析、数据挖掘建模、AI智能分析等大数据分析需求。
Smartbi产品功能设计全面,涵盖数据提取、数据管理、数据分析、数据共享四个环节,帮助客户从数据的角度描述业务现状,分析业务原因,预测业务趋势,推动业务变革。
思迈特软件Smartbi是国家认定的“高新技术企业”,广东省认定的“大数据培育企业”, 广州市认定的“两高四新企业”,获得了来自国家、地方政府、国内外权威分析机构、行业组织、知名媒体的高度关注和认可,斩获“大数据百强企业”、“中国十佳商业智能方案商”、“中国科技创新企业100强”等100+荣誉奖项!
凭借NLP和数据挖掘功能入选Gartner“中国AI创业公司代表厂商(2020)”,凭借思迈特软件Smartbi入选“Gartner?增强分析2020代表厂商”。

有哪些成熟的数据平台建设方案?有案例么?

完整的数据平台建设方案,会涉及以下3个方面:

逻辑架构、应用架构、物理架构,

这些其实一个厂商就可以全部完成。下面我说说这数据平台建设方案的3方面具体是什么。

一、逻辑架构

数据源层:

•所有数据的源头。

•来源于多个业务系统。

•数据格式不统一,尚待清洗。

操作数据存储(ODS)层:

•介于业务系统与数据仓库间的隔离层, 通常在该层中完成ETL的大部分工作。

•用于存放从业务系统直接抽取出来的数据。

•通过分步汇总,逐步得到数据仓库所需分析数据。

•ETL中的大部分工作在ODS层完成。

数据仓库层:

•面向各业务主题的、集成的、稳定的、时变的数据。

•通常是汇总的、可冗余的数据。

•主要用于查询。

数据共享层:

•该层通过各类技术手段(如:WebService、WebAPI、ESB等)将数据仓库中的规范数据向外部共享。

•通过数据共享层,实现数据仓库、各业务系统间的联动。

•数据仓库的规范数据对于完善业务系统功能有重大推动作用。

数据分析层:

•单个主题更加集中。

•从各维度视角观察度量数据。

•技术上通常采用各种技术手段(如:列存储)提高查询性能。

二、物理架构

此为举例参考

三、应用架构

图中展示的,其实就是永洪科技他们帮我们梳理出来的数据平台建设方案的架构,而且他们对于我所在的行业也有很深的理解,帮助我们梳理了业务指标,从前期数据平台体系的建设,到后期具体业务场景下业务指标的梳理,都为我们提供了良好的支持。

以上数据平台的建设体系,希望能对题主有所帮助。

如何搭建大数据分析平台?

一般的大数据平台从平台搭建到数据分析大概包括以下几个步骤:

Linux系统安装。分布式计算平台或组件安装。

数据导入。数据分析。一般包括两个阶段:数据预处理和数据建模分析。数据预处理是为后面的建模分析做准备,主要工作时从海量数据中提取可用特征,建立大宽表。

数据建模分析是针对预处理提取的特征或数据建模,得到想要的结果。结果可视化及输出API。可视化一般式对结果或部分原始数据做展示。一般有两种情况,行数据展示,和列查找展示。

搭建大数据分析平台到思迈特软件Smartbi看看,在Excel中对数据进行二次加工,告别依赖于IT人员处理的困境;数据有错误也不怕,能够对缺失、不规范的数据进行二次加工,并能将这些数据入库;不受限制的分析思路,按您的想法加工数据;将本地数据和线上数据结合起来分析。

数据分析平台靠不靠谱,来试试Smartbi,思迈特软件Smartbi经过多年持续自主研发,凝聚大量商业智能最佳实践经验,整合了各行业的数据分析和决策支持的功能需求。满足最终用户在企业级报表、数据可视化分析、自助探索分析、数据挖掘建模、AI智能分析等大数据分析需求。

思迈特软件Smartbi个人用户全功能模块长期免费试用
马上免费体验:Smartbi一站式大数据分析平台

xdata大数据平台解决方案特点有

xdata大数据平台解决方案特点有以下几点第一要说的就是Apache Drill。这个方案的产生就是为了帮助企业用户寻找更有效、加快Hadoop数据查询的方法。
第二要说的就是Pentaho BI。Pentaho BI 平台和传统的BI 产品不同,它是一个以数据流程为中心的,面向解决方案的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,这样一来就方便了商务智能应用的开发。Pentaho BI的出现,使得一系列的面向商务智能的独立产品如Jfree、Quartz等等,能够集成在一起,构成一项复杂的、完整的商务智能解决方案。

大数据解决方案
然后要说的就是Hadoop。Hadoop 是一个能够对海量数据进行分布式处理的软件框架。不过Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。另外,Hadoop 依赖于社区服务器,所以Hadoop的成本比较低,任何人都可以使用。
接着要说的是RapidMiner。RapidMiner是世界领先的数据挖掘解决方案,有着先进的技术。RapidMiner数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。
Storm。Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。 Storm支持许多种编程语言,使用起来非常有趣。
最后要说的就是HPCC。什么是HPPC呢?HPCC是High Performance Computing and Communications(高性能计算与通信)的缩写。HPCC主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆比特网络技术,扩展研究和教育机构及网络连接能力。 关于数据平台方案和数据平台解决方案的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 数据平台方案的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于数据平台解决方案、数据平台方案的信息别忘了在本站进行查找喔。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:移动怎么关闭数据流量(移动关闭数据流量电话没信号)
下一篇:数据平台的作用(数据平台主要包括的维度)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~