c语言sscanf函数的用法是什么
319
2023-03-12
本文目录一览:
看附件和下图
此公式为数组公式,要按CTRL+SHIFT+ENTER三键结束
=SUM((Sheet2!B$2:F$3=B2)*1,(Sheet3!B$2:F$3=B2)*1,(Sheet4!B$2:F$3=B2)*1)
大数据分析处理解决方案
方案阐述
每天,中国网民通过人和人的互动,人和平台的互动,平台与平台的互动,实时生产海量数据。这些数据汇聚在一起,就能够获取到网民当下的情绪、行为、关注点和兴趣点、归属地、移动路径、社会关系链等一系列有价值的信息。
数亿网民实时留下的痕迹,可以真实反映当下的世界。微观层面,我们可以看到个体们在想什么,在干什么,及时发现舆情的弱信号。宏观层面,我们可以看到当下的中国正在发生什么,将要发生什么,以及为什么怎样汇聚数据?借此可以观察舆情的整体态势,洞若观火。
原本分散、孤立的信息通过分析、挖掘具有怎样汇聚数据了关联性,激发了智慧感知,感知用户真实的态度和需求,辅助政府在智慧城市,企业在品牌传播、产品口碑、营销分析等方面的工作。
所谓未雨绸缪,防患于未然,最好的舆情应对处置莫过于让舆情事件不发生。除了及时发现问题,大数据还可以帮我们预测未来。具体到舆情服务,舆情工作人员除了对舆情个案进行数据采集、数据分析之外,还可以通过大数据不断增强关联舆情信息的分析和预测,把服务的重点从单纯的收集有效数据向对舆情的深入研判拓展,通过对同类型舆情事件历史数据,及影响舆情演进变化的其他因素进行大数据分析,提炼出相关舆情的规律和特点。
大数据时代的舆情管理不再局限于危机解决,而是梳理出危机可能产生的各种条件和因素,以及从负面信息转化成舆情事件的关键节点和衡量指标,增强我们对同类型舆情事件的认知和理解,帮助我们更加精准的预测未来。
用大数据引领创新管理。无论是政府的公共事务管理还是企业的管理决策都要用数据说话。政府部门在出台社会规范和政策时,采用大数据进行分析,可以避免个人意志带来的主观性、片面性和局限性,可以减少因缺少数据支撑而带来的偏差,降低决策风险。通过大数据挖掘和分析技术,可以有针对性地解决社会治理难题;针对不同社会细分人群,提供精细化的服务和管理。政府和企业应建立数据库资源的共享和开放利用机制,打破部门间的“信息孤岛”,加强互动反馈。通过搭建关联领域的数据库、舆情基础数据库等,充分整合外部互联网数据和用户自身的业务数据,通过数据的融合,进行多维数据的关联分析,进而完善决策流程,使数据驱动的社会决策与科学治理常态化,这是大数据时代舆情管理在服务上的延伸。
解决关键
如何能够快速的找到所需信息,采集是大数据价值挖掘最重要的一环,其后的集成、分析、管理都构建于采集的基础,多瑞科舆情数据分析站的采集子系统和分析子系统可以归类热点话题列表、发贴数量、评论数量、作者个数、敏感话题列表自动摘要、自动关键词抽取、各类别趋势图表;在新闻类报表识别分析归类: 标题、出处、发布时间、内容、点击次数、评论人、评论内容、评论数量等;在论坛类报表识别分析归类: 帖子的标题、发言人、发布时间、内容、回帖内容、回帖数量等。
解决方案
多瑞科舆情数据分析站系统拥有自建独立的大数据中心,服务器集中采集对新闻、论坛、微博等多种类型互联网数据进行7*24小时不间断实时采集,具备上千亿数据量的数据索引、挖掘分析和存储能力,支撑政府、企业、媒体、金融、公安等多行业用户的舆情分析云服务。因此多瑞科舆情数据分析站系统在这方面有着天然优势,也是解决信息数量和信息(有价值的)获取效率之间矛盾的唯一途径,系统利用各种数据挖掘技术将产生人工无法替代的效果,为市场调研工作节省巨大的人力经费开支。
实施收益
多瑞科舆情数据分析站系统可通过对大数据实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。
系统实施
系统主要应用于负责信息管理的相关部门。由于互联网的复杂性,多瑞科网络舆情监测系统实施起来需要客户的配合。
可以利用数据中台有效进行数据挖掘和分析。数据中台建设的基础其实还是数据仓库和数据中心,但和传统的数据仓库和数据中心相比,确实有一些过人之处。此处以袋鼠云数据中台为例,浅析数据中台策略的几个过人之处:
1、 数据汇聚,承上启下。区别于传统的数据治理平台,数据中台策略的基本理念是,将所有的数据汇聚到数据中台,以后的每个数据应用(无论是指标和分析类的,还是画像类和大数据类的)统统从数据中台获取数据,如果数据中台没有,那么数据中台就负责把数据找来,如果数据中台找不来或者从外部购买,就说明当前真没有这个数据,数据应用也就无从展开。
2、 纵观大局,推动全局。数据业务在企业中应当是一个完整业务,是一个亟需提高定位的业务,是企业的战略业务。所以数据中台策略应当对应企业的数据战略,并提供更有力的支撑,而不是仅仅停留在把数据采集,把数据清洗,把数据算出来。所以,数据中台建设,需要详实了解企业的数据情况,数据需求以及构建数据业务的推动蓝图。上述内容应当通过相互衔接的七个数据服务进行完整的构建以及推动。
3、 技术升级、应用便捷。大数据平台在很长一段时间,甚至直至现在都还是以开源产品为主流的状况,开源产品使用费力,配置繁琐,导致大数据开发门槛高,数据应用受到严重阻碍,甚至在很多地方一直把大数据技术平台和传统的数仓做区别对待,认为大数据产品的特点是流式计算和处理非结构化数据。其实大数据产品如果能够降低使用门槛的话,会迅速替代传统数仓的技术产品。传统数仓无论在海量数据处理能力,节点扩展能力,实时计算能力,软件购买和维护成本等诸多方面都无法与当前的大数据平台进行抗衡。目前业内比较典型的就是阿里云数加平台,数加平台基本让数据开发者能够像使用传统数据库一样的使用大数据平台了,所有操作方式都是通过可视化界面进行,大部分的开发都是通过SQL语句来实现。
袋鼠云数据中台建设与策略已经脱离了一个单纯的产品概念范畴,更多的是关注于企业的整体数据化建设工作,这也是数据治理平台的趋势所向。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~