数据信息平台(数据 平台)

网友投稿 459 2023-03-11

本篇文章给大家谈谈数据信息平台,以及数据 平台对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享数据信息平台的知识,其中也会对数据 平台进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

什么是基础数据信息平台

一直想整理一下这块内容,既然是漫谈,就想起什么说什么吧。我一直是在互联网行业,就以互联网行业来说。
先大概列一下互联网行业数据仓库、数据平台的用途:

整合公司所有业务数据,建立统一的数据中心;

提供各种报表,有给高层的,有给各个业务的;

为网站运营提供运营上的数据支持,就是通过数据,让运营及时了解网站和产品的运营效果;

为各个业务提供线上或线下的数据支持,成为公司统一的数据交换与提供平台;

分析用户行为数据,通过数据挖掘来降低投入成本,提高投入效果;比如广告定向精准投放、用户个性化推荐等;

开发数据产品,直接或间接为公司盈利;

建设开放数据平台,开放公司数据;

。。。。。。


上面列出的内容看上去和传统行业数据仓库用途差不多,并且都要求数据仓库/数据平台有很好的稳定性、可靠性;但在互联网行业,除了数据量大之外,越来越多的业务要求时效性,甚至很多是要求实时的 ,另外,互联网行业的业务变化非常快,不可能像传统行业一样,可以使用自顶向下的方法建立数据仓库,一劳永逸,它要求新的业务很快能融入数据仓库中来,老的下线的业务,能很方便的从现有的数据仓库中下线;


其实,互联网行业的数据仓库就是所谓的敏捷数据仓库,不但要求能快速的响应数据,也要求能快速的响应业务;


建设敏捷数据仓库,除了对架构技术上的要求之外,还有一个很重要的方面,就是数据建模,如果一上来就想着建立一套能兼容所有数据和业务的数据模型,那就又回到传统数据仓库的建设上了,很难满足对业务变化的快速响应。应对这种情况,一般是先将核心的持久化的业务进行深度建模(比如:基于网站日志建立的网站统计分析模型和用户浏览轨迹模型;基于公司核心用户数据建立的用户模型),其它的业务一般都采用维度+宽表的方式来建立数据模型。这块是后话。


整体架构下面的图是我们目前使用的数据平台架构图,其实大多公司应该都差不多:


请点击输入图片描述

逻辑上,一般都有数据采集层、数据存储与分析层、数据共享层、数据应用层。可能叫法有所不同,本质上的角色都大同小异。


我们从下往上看:


数据采集数据采集层的任务就是把数据从各种数据源中采集和存储到数据存储上,期间有可能会做一些简单的清洗。


数据源的种类比较多:


网站日志:


作为互联网行业,网站日志占的份额最大,网站日志存储在多台网站日志服务器上,


一般是在每台网站日志服务器上部署flume agent,实时的收集网站日志并存储到HDFS上;


业务数据库:


业务数据库的种类也是多种多样,有Mysql、Oracle、SqlServer等,这时候,我们迫切的需要一种能从各种数据库中将数据同步到HDFS上的工具,Sqoop是一种,但是Sqoop太过繁重,而且不管数据量大小,都需要启动MapReduce来执行,而且需要Hadoop集群的每台机器都能访问业务数据库;应对此场景,淘宝开源的DataX,是一个很好的解决方案(可参考文章 《异构数据源海量数据交换工具-Taobao DataX 下载和使用》),有资源的话,可以基于DataX之上做二次开发,就能非常好的解决,我们目前使用的DataHub也是。


当然,Flume通过配置与开发,也可以实时的从数据库中同步数据到HDFS。


来自于Ftp/Http的数据源:


有可能一些合作伙伴提供的数据,需要通过Ftp/Http等定时获取,DataX也可以满足该需求;


其他数据源:


比如一些手工录入的数据,只需要提供一个接口或小程序,即可完成;


数据存储与分析毋庸置疑,HDFS是大数据环境下数据仓库/数据平台最完美的数据存储解决方案。


离线数据分析与计算,也就是对实时性要求不高的部分,在我看来,Hive还是首当其冲的选择,丰富的数据类型、内置函数;压缩比非常高的ORC文件存储格式;非常方便的SQL支持,使得Hive在基于结构化数据上的统计分析远远比MapReduce要高效的多,一句SQL可以完成的需求,开发MR可能需要上百行代码;


当然,使用Hadoop框架自然而然也提供了MapReduce接口,如果真的很乐意开发Java,或者对SQL不熟,那么也可以使用MapReduce来做分析与计算;Spark是这两年非常火的,经过实践,它的性能的确比MapReduce要好很多,而且和Hive、Yarn结合的越来越好,因此,必须支持使用Spark和SparkSQL来做分析和计算。因为已经有Hadoop Yarn,使用Spark其实是非常容易的,不用单独部署Spark集群,关于Spark On Yarn的相关文章,可参考:《Spark On Yarn系列文章》


实时计算部分,后面单独说。


数据共享这里的数据共享,其实指的是前面数据分析与计算后的结果存放的地方,其实就是关系型数据库和NOSQL数据库;


前面使用Hive、MR、Spark、SparkSQL分析和计算的结果,还是在HDFS上,但大多业务和应用不可能直接从HDFS上获取数据,那么就需要一个数据共享的地方,使得各业务和产品能方便的获取数据; 和数据采集层到HDFS刚好相反,这里需要一个从HDFS将数据同步至其他目标数据源的工具,同样,DataX也可以满足。


另外,一些实时计算的结果数据可能由实时计算模块直接写入数据共享。


数据应用

业务产品


业务产品所使用的数据,已经存在于数据共享层,他们直接从数据共享层访问即可;


报表


同业务产品,报表所使用的数据,一般也是已经统计汇总好的,存放于数据共享层;


即席查询


即席查询的用户有很多,有可能是数据开发人员、网站和产品运营人员、数据分析人员、甚至是部门老大,他们都有即席查询数据的需求;


这种即席查询通常是现有的报表和数据共享层的数据并不能满足他们的需求,需要从数据存储层直接查询。


即席查询一般是通过SQL完成,最大的难度在于响应速度上,使用Hive有点慢,目前我的解决方案是SparkSQL,它的响应速度较Hive快很多,而且能很好的与Hive兼容。


当然,你也可以使用Impala,如果不在乎平台中再多一个框架的话。


OLAP


目前,很多的OLAP工具不能很好的支持从HDFS上直接获取数据,都是通过将需要的数据同步到关系型数据库中做OLAP,但如果数据量巨大的话,关系型数据库显然不行;


这时候,需要做相应的开发,从HDFS或者HBase中获取数据,完成OLAP的功能;


比如:根据用户在界面上选择的不定的维度和指标,通过开发接口,从HBase中获取数据来展示。


其它数据接口


这种接口有通用的,有定制的。比如:一个从Redis中获取用户属性的接口是通用的,所有的业务都可以调用这个接口来获取用户属性。


实时计算现在业务对数据仓库实时性的需求越来越多,比如:实时的了解网站的整体流量;实时的获取一个广告的曝光和点击;在海量数据下,依靠传统数据库和传统实现方法基本完成不了,需要的是一种分布式的、高吞吐量的、延时低的、高可靠的实时计算框架;Storm在这块是比较成熟了,但我选择Spark Streaming,原因很简单,不想多引入一个框架到平台中,另外,Spark Streaming比Storm延时性高那么一点点,那对于我们的需要可以忽略。


我们目前使用Spark Streaming实现了实时的网站流量统计、实时的广告效果统计两块功能。


做法也很简单,由Flume在前端日志服务器上收集网站日志和广告日志,实时的发送给Spark Streaming,由Spark Streaming完成统计,将数据存储至Redis,业务通过访问Redis实时获取。


任务调度与监控在数据仓库/数据平台中,有各种各样非常多的程序和任务,比如:数据采集任务、数据同步任务、数据分析任务等;


这些任务除了定时调度,还存在非常复杂的任务依赖关系,比如:数据分析任务必须等相应的数据采集任务完成后才能开始;数据同步任务需要等数据分析任务完成后才能开始; 这就需要一个非常完善的任务调度与监控系统,它作为数据仓库/数据平台的中枢,负责调度和监控所有任务的分配与运行。


前面有写过文章,《大数据平台中的任务调度与监控》,这里不再累赘。


总结在我看来架构并不是技术越多越新越好,而是在可以满足需求的情况下,越简单越稳定越好。目前在我们的数据平台中,开发更多的是关注业务,而不是技术,他们把业务和需求搞清楚了,基本上只需要做简单的SQL开发,然后配置到调度系统就可以了,如果任务异常,会收到告警。这样,可以使更多的资源专注于业务之上。

请点击输入图片描述

秸秆资源数据信息平台要与什么和什么实行信息共享

市和县。秸秆资源数据信息平台是建立科学规范的秸秆产生与利用情况调查监测标准和方法,要与国家的市和县实行信息共享,主要是通过该系统可掌握各区域内农作物秸秆产生和利用情况,为今后相关产业布局及农作物秸秆综合利用技术推广工作提供决策和参考依据。

全国公共信用大数据平台

全国公共信用大数据平台网址数据信息平台:https://www.axinyong.com.cn/

为适应发展需要,完善诚信建设长效机制,推进信用信息共享,构建与高质量发展相适应的社会信用体系和新型信用监管制度,原“全国行政执法数据信息平台”更名为“全国公共信用大数据平台”。

全国公共信用大数据平台依据社会信用体系建设有关法律法规、规章制度、规范性文件,全国公共信用大数据平台汇集全国各级行政机关、司法机关、仲裁机构、行业组织等在依法履行职责过程中形成的,能够反映法人机构和非法人组织在社会和经济活动中履行法定义务或约定义务的行为和状态的信用大数据,用于识别、分析、判断信用主体守法、守信、履约情况。

全国公共信用大数据平台数据涵盖行政处罚、行政强制、行政检查、司法执行、违法失信、通缉追查、失信惩戒、行业黑名单等公共信用大数据和市场信用数据。

全国行政执法数据信息平台是做什么的,包括哪些内容?

行政执法数据

这里的行政是指(除立法、检察、司法以外政府部门的工作)
执法数据是指数据信息平台:执法人员依法办事的过程数据信息平台,细节、相关负责人、罚单……一切可公开的档案资料。
公开出来就是信息喽数据信息平台,官方网站就是信息平台。
行政执法数据信息包括数据信息平台:交通、工商、治安、金融、税务、民政……
相当于公开政府执法部门的业绩,主要作用还是解决民众的疑问,涉及战略不可能公开,要不然就便宜国外的情报机构了。

在哪些平台上能够收集到数据信息呢?

数据收集的四种常见的方式包括问卷调查、查阅资料、实地考查、试验,几种方法各有各的又是和缺点,具体分析如下。

一是问卷调查。问卷调查是数据收集最常用的一种方式,因为它的成本比较低,而且得到的信息也会比较全面。但是问卷调查所得到的答案通常是没有针对性的,也就是说,对问卷调查所收集到的数据要进行进一步的分析。并且以前问卷调查推广的时间会比较慢,因为很耗人力。但是现在网上有很多问卷调查的网站,如果通过问卷调查网站收集数据的话,那么会更方便快速一些。所以问卷调查操作方便,缺点是数据没有针对性,无法得到深层次的数据。

二是查阅资料。查阅资料是最古老的数据收集的方式,通过查阅书籍,记录等资料来得到自己想要的数据。在这个数据收集的过程中,本来就有筛选性和分析性,也就是说,查阅资料所得到的数据,相对而言,可能更接近你想要得到的结果。现在不管是图书馆还是网络查询,都是非常方便的,给查阅资料提供了很好的环境。查阅资料的缺点是对操作者的要求很高,并且现在资料繁琐真假参半,需要有很高的判断力。

三是实地考查。实地考察就是到指定的地方去做研究 。指为明白一个事物的真相,势态发展流程,而去实地进行直观的,局部进行详细的调查。在考察过程中,要随时对自己观察到的现象进行分析,努力把握住考察对象的特点。这种收集数据的方式就比较耗时耗力,并且也需要大家的配合。这种收集方式的优点是可以第一时间得到第一手的资料,缺点就是可能没有办法达到你想要的目标,因为考察过程中变数也是很大的。

四是实验。实验设计数据是四种方法中最耗时间的一种,因为它是通过各种各样的实验来得到一个统一的方向,也就是说,在这个过程中,可能有无数次的失败。但是实验得到的数据是最准确的,而且可能会推动某个行业的进步。所以,实验收集数据的优点是数据的准确性很高,而他的缺点就是未知性很大,不管实验的周期还是实验的结果都是不确定性的。

随着科技的发展和大数据时代的到来,收集数据越来越容易,而大家也应该更注重于保护和利用数据。

关于数据信息平台和数据 平台的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 数据信息平台的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于数据 平台、数据信息平台的信息别忘了在本站进行查找喔。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:数据研究平台(数据研究平台有哪几个)
下一篇:中国数据汇聚平台(数据汇app)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~