医疗数据分析平台(医疗数据分析平台哪个好)

网友投稿 334 2023-03-01

本篇文章给大家谈谈医疗数据分析平台,以及医疗数据分析平台哪个好对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享医疗数据分析平台的知识,其中也会对医疗数据分析平台哪个好进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

最近很火的医疗大数据分析到底是个什么鬼

医疗行业是一个生态系统医疗数据分析平台,这个生态系统包含多个重要角色:作为医疗服务提供方的公私立医院、社区医院等医疗机构医疗数据分析平台,作为医疗服务和产品的支付方的商业保险公司以及社会保险,还有作为医疗政策的制定和监管方的各级政府卫生部门,比如卫计委和地方各级卫生厅局,以及作为医药和医疗产品生产和销售方的各个相关企业,他们研发、生产或者销售各类药物以及医疗器械产品。除了以上传统角色,随着可穿戴技术的成熟和逐步市场化,目前医疗行业还出现很多面向消费者健康以及运动的产品和基于数据的服务。他们通过可穿戴设备记录和检测消费者的日常活动和生理指标,也成为医疗行业中不可或缺的一员,并逐步成长为大数据的拥有者。

医疗生态环境在其运转过程中产生了大量的数据。如何更加有效地整合和利用相关数据,为政府更好地履行政策制定和监管职能,是各级政府卫生部门所面临的重要问题之一。如何利用已有病人的数据提高未来临床治疗的效率和质量,并支撑专业的医疗研究是医疗服务方所面临的重要挑战。

存在的问题

随着国家深化医疗卫生体制改革,对医疗卫生信息化建设资金投入的不断增加,促使医疗卫生领域信息化建设取得了一定的成效,在全国医疗卫生信息统计、各级医疗卫生管理体系、基本公共卫生服务提供、医院信息化管理等方面提供了信息化辅助管理手段,提升工作效率和医疗卫生管理水平。 但医疗行业的大数据的收集、分析和应用仍然面临很多的挑战。

首先,医疗行业的大数据分属不同的行业角色。如何整合这些大数据是一个挑战。数据的分享和交换需要合理的政策并考虑各方合理的利益诉求。

其次,医疗行业数据的电子化和数字化仍处于早期阶段,很多数据尚未数字化。比如,医疗行业仍然要求医疗机构将病人档案纸质化,这加大了医疗机构工作人员的工作量,从某种程度上抑制了医疗信息化系统的使用。国内仍然有很多医院包括基层医院并未购买和使用完善的信息化系统来支撑相关数据的数字化。例如,很多基层医院尚未建立基本的医院信息系统(HIS)。电子病历系统(EMR/EHR)在国内医院也未普及。

再次,由于医疗信息系统的提供商非常多,不同医疗机构的需求千变万化,行业内部同类信息系统在数据结构和格式等解决方案上的同质性比较差,数据交换和分享在技术上存在阻力。尽管面临这么多的挑战,如果医疗数据分析平台我们能够围绕医疗大数据制定合理的整合、分析和应用政策和策略,那么医疗大数据及其分析就能帮助提高整个医疗行业的运转效率乃至体验水平。

医疗大数据分析应用


请点击输入图片描述

大数据分析的发展为解决医疗行业所面临的问题提供了可能性。上图总结了大数据分析在医疗行业中潜在的应用场景以及主要用户。我们来看看几个典型应用:

1、临床医疗模式分析

临床过程模式分析功能是指利用大数据分析系统对过程数据进行分析并改进的能力。医疗行业数据分析在医院内部通过数据进行诊疗过程分析,以发现大量临床电子记录数据之间的关系,为今后的循证临床实践提供参考。临床数据分析系统为临床医疗过程全程大数据、实时诊疗数据以及病人电子病历可视化数据的全景分析提供了新途径,特别是对于区域医疗能够观察到病人以前在其他医院的入院情况,支持在医疗成本和效果之间的平衡,帮助医院进行医疗科研。

2、非结构化数据分析

对于存储于分布式数据库系统的数据,需要进行数据过滤、清晰、转换并集成整合,建立临床数据中心。存在于多个部门的非结构化数据,采用NOSQL 数据库进行数据存储,非结构化或半结构化的管理的核心是Apache Hadoop开发环境的实现,MapReduce 能够将大的工作任务分解为一组离散的任务,将分析后的数据集中存储,并提供可视化展现和医疗决策支持访问。

医疗大数据分析与传统数据分析系统的差别在于大数据分析具有非结构化数据的分析能力,这种非结构化数据是传统的医疗数据库不能处理的。临床电子病历中基于XML文档信息、临床影像、医生处方等,非结构化数据占临床数据总量的80%以上,对这一部分的数据进行处理分析,能够得到相关指证,比如,对医学影像分析,通过与相关疾病典型影像特征对比,得到病人疾病诊断,这对医院改进临床效率控制医疗成本有极大益处。

3、管理决策支持

管理决策支持功能强调日常医疗服务过程分析,以支撑管理决策并采取相关措施。一般来说,管理决策支持依赖于医院信息共享互联互通以及信息数据分析能力,对于重大疾病循证分析综合评判对临床医疗质量管理有重大价值,依据电子病历数据分析,开发个性化诊疗方案有助于提升医院精准医疗水平。

从机构组织层面对医院信息系统产生的大数据进行分析,对于跨部门操作流程进行改进具有重要意义,综合性数据分析能帮助管理者全面了解组织机构存在的薄弱环节并采取对应措施,从实践看,建立临床数据中心数据仓库并与实际生产系统实时交互,对于医疗质量水平提升和病人临床安全具有重要保障作用。

4、预测分析功能

通过医疗大数据使用统计分析工具建立评价模型,对疾病发展转归进行预测是医疗大数据应用的重要方面。大数据的预测功能强调对通过大量数据分析对未来趋势预测,医疗机构的数据分析平台需要与临床数据中心、预测分析算法(如:回归分析、机器学习、神经网络等)等相结合,向医护管工作者提供可视化界面,帮助管理和临床决策。临床大数据中心的建设能够通过过去历史数据对未来提供参考,有助于医院精细化管理和精准化医疗。

在医疗机构,对二次住院预测分析大大降低了病情的不确定性,重症中心ICU病人全程生理参数数据监控分析,进行关键指标的警示和交互干预,使医护工作更有效率,优化了相关操作,降低了医疗风险。同时,有利于形成医护患协同的病人全过程的疾病管理分析,产生最佳医疗实践的疾病诊治流程。

5、数据闭环追溯

医疗数据信息如:费用成本数据、临床数据、药学信息、病人行为数据、设备传感数据等均需实时采集或尽量实时采集。传统临床信息系统数据分散在各个应用系统中,数据不一致,产生冗余矛盾,而且不同部门的设备或不同临床信息应用内部信息数据孤立使临床过程工作流优化也存在困难。数据的闭环追溯有利于以病人为中心的临床需求和部门服务与设备应用的监控。大数据分析提供了全流程、全方位的解决能力,业务系统的数据可实时与数据中心进行数据交互,通过大数据算法进行深度评价分析,医护工作者可即时监控病人状态、追踪相关的警示信息并采取相应措施,对医疗安全和用药安全有重要价值。

总的来说,大数据分析在医疗行业具有广泛的应用前景。首先,医疗行业各个主要角色已经或者开始积累大量数据并为大数据分析创造了条件。不同数据集合的整合和分析面临政策和利益诉求的挑战,但是也带来了新的机遇。其次,医疗行业是一个生态系统并面临诸多问题,大数据分析为解决这些系统性问题提供了新工具。

亿信华辰作为数据分析软件领导厂商,紧跟医疗卫生领域发展趋势,面向国家卫健委及各级医疗卫生单位、机构,提供灵活、可适配的解决方案。


请点击输入图片描述

提供集数据采集、数据治理(含元数据、数据标准、数据质量、数据生命周期管理、数据安全)、数据分析与挖掘、可视化展示一体化的解决方案。

有什么免费调研医药数据的地方?

在医药大健康行业医疗数据分析平台,部分资料数据可以通过药融云免费获得,相对于国内外药品上市信息、药品研发信息、临床信息、药品审评信息、原料药信息、一致性评价、医药投融资、药品招投标、国家药品集中采购、医保目录、药品说明书、医疗器械等等,覆盖生物医药产业链完整生命周期,为立项调研、市场分析提供数据支持。

拥有上亿条医药数据,一百多个医药行业数据库,提供不同中了医疗数据分析平台的查询信息和分析服务,如果是对于想要了解医药市场销售数据,可以选择企业版本,申请试用,免费体验。


列如想要查询免费医药研发信息

包含了全球药物研发数据库,中国药品审评数据库,全球/中国临床试验数据库、药物合成路线等,帮助掌握全球/国内在研新药市场变化,了解全球/国内新药发展趋势,解决立项评估等问题医疗数据分析平台;同时可为企业在研发立项或购买新产品提供决策依据。

调研医药研发数据库

全球上市药品查询

包括中、美、日、欧英国、德国、法国等国家上市药品信息通过搜索即可快速了解目标产品在各国上市的详细内容,为药物研究和使用提供参考比对。

全球上市药品查询

查询药品的一致性评价

本数据库收载了通过一致性评价品规和要做一致性评价的全部数据。数据来源于内部人员收集整理而成。查询通过一致性评价品规数据提供方便。数据库支持精确查询和条件筛选,用户可以通过输入药品名称、企业名称、批准文号等进行查询。

药品一致性评价信息

当然还能查询美国、日本橙皮书、国外药典,原料药、医疗器械等信息,都是免费的,如果想要分析医药市场销售数据或者了解更多的药品信息可以申请试用企业版,提供更全面的医药数据,同时还能提供药物立项、市场分析、行业研究等相关定制服务。

免费调研医药数据

医疗大数据平台推进医学道德形态重构

医疗大数据平台推进医学道德形态重构
 大数据时代的到来使医学呈现出个体化发展趋势医疗数据分析平台,而基因技术的应用又使精准医学凸显。个体化医疗与精准医疗的结合,预示了大数据时代医疗变革的方向医疗数据分析平台:通过数字化人体引发医疗健康革命。

大数据时代,一种潜在的变化正在显现,掌控个人的医疗过程和医疗保健成为变化的核心。医疗大数据平台的运营会随着规模的扩大和效率的提高而关涉总体人类健康、社会公共善、共享的伦理和个人医疗服务方面的改善,从而推进医学道德形态的革命性重构。
首先,通过个体化医学改善总体形态的人类健康。数字化人体和基因组学的重要意义在于:通过大数据技术和基因筛查技术的融合运用,带来医学重心的转移或变化。它提供给人们的医学劝告主要有两条:其一,预防比治疗更重要医疗数据分析平台;其二,医学只有遵循个体化科学才能带来整体人类健康状况的实质性改善。在大数据时代,手机将成为生命线,它使边远地区的人们获得所需要的医疗服务,并通过数据反馈为社区创造一个数字化的网络系统。通过大数据,以患者为中心的医疗可以不受时空限制,在健康培训、在线诊断、预防和灾疫应对等领域一展所长。
其次,通过构建公共健康之善疏解医患紧张。数字化时代医学道德形态重构的重点,是通过个体化科学构建公共善,并由此疏解医患紧张关系。生命伦理学对个体化权利的强调和对总体人口健康的强调之间存在明显断裂。然而,个人自主或自我决定如果没有基于“数字化人体+基因测序”的个体化医学的支持,只能是一种抽象的权利原则。医疗大数据提供给个人的健康或诊疗指南,无论对病人还是对医生,都类似于航海图。这为人们提供了一个从未有过的世界观,它使病人真正成为医学的中心。
再次,通过融合的医学展现开放共享的伦理。随着数字化时代的来临,各国政府都认识到数据开放的重要性,出台了数据开放的法令。医疗大数据将患者作为医疗信息的点连成一片数据之海。因此,一种开放共享的医疗信息技术系统可以通过相关关系的挖掘而预测某些疾病的分布或流行。数据的开放共享将带来一系列融合,进而将快速成熟的数字化、非医学领域的移动设备、云计算和社交网络与蓬勃发展的基因组学、生物传感器和先进成像技术的数字化医学领域合为一体。医学或医疗技术可能因为更偏重预防而体现“上医医未病之病”的理念。
最后,通过开放整合的专家团队提供个体化医疗服务。基于网络平台的医疗技术实践,使得医学团队的诊疗模式成为未来医疗诊治的基本模式。大数据时代的医疗技术实践,为“团队医学”提供了新的形式,医学不再是个体医生的单打独斗,而是基于网域空间的专家团队为患者提供量身定制的个体化医疗服务。以团队形式为个体提供医疗健康服务,建构了真正以患者为中心的医学道德形态。从个体收集到的数据的大批汇总最终将会创建一种良性反馈的伦理性圏层,使健康计划的所有参与者受益,并鼓励愈来愈多的人参与进来。
大数据时代的健康革命,在技术形态上,取决于数字化人体基础上的精准医学模式的建立。无线传感器、大数据与基因组学的结合是其先锋。这种医学道德形态的重构凸显了三大伦理道德难题。
第一,个人隐私及安全问题。在数字化、信息化时代,医疗行业面临保护信息安全和保护个人隐私的双重困扰。安全隐患和隐私风险之一,是员工使用自带移动设备连接医疗系统的IT基础设施所带来的风险,这是恶意软件侵入的最薄弱环节,被称为医疗领域的“自带设备”难题。推行移动化或个体化医疗计划(或健康计划)是许多顶尖级诊所和医院的计划,实施过程必然会面临该难题。除此之外,还面临医疗大数据或精准医学模式自身带来的问题,比如医疗设备或监控器的数据失窃问题等。与此同时,医院利用数据平台收集和分析某患者的敏感信息是否侵犯个人隐私医疗数据分析平台?政府机构和企业对个人健康信息进行收集、监控和分析处理是否符合隐私规则医疗数据分析平台?医疗数据、商业数据、科研数据等应遵循何种收集规则?参与者隐私的保护既是医学研究得以展开的前提,又是一切健康计划得以实施的前提。只有在保护个人隐私与充分利用数据库之间寻求一种平衡,才能应对大数据时代医学生命伦理学的隐私及安全伦理问题。
第二,数据的真实可靠问题。如何防范数据失信或失真是数据共享遭遇的基准层面的伦理挑战。建立在数字化人体基础上的医疗技术实践,其本身就预设了一条不可突破的道德底线。由于人体及其健康状态以数字化的形式被记录、存储和传播,因此形成了与实体人相对应的镜像人或数字人。失信或失真的数据,导致被预设为可信的精准医疗变得不可信。例如,如果有人担心个人健康数据或基因数据对个人职业生涯和未来生活造成不利影响,当有条件采取隐瞒、不提供或提供虚假数据来玩弄数据系统时,这种情况就可能出现,进而导致电子病历和医疗信息系统(HIT)以及个人健康档案(HER)不准确。如何治理或防范数据失信或失真,是数字化时代数据共享面临的一种伦理挑战,它构成大数据时代生命医学伦理学的重大课题。
第三,数字鸿沟或价值鸿沟带来的挑战。数字鸿沟指不同社会群体对于数字化技术或信息技术使用的巨大差异,分为接入、应用、知识、价值四个方面。随着接入问题的逐步解决,应用和知识方面的鸿沟正在缩小,价值鸿沟变得越来越突出。这提示我们必须充分重视数字化健康革命带来的价值观变革。只有缩小价值鸿沟,使人们认识到,个体化医疗和精准医学基础上的个人健康革命,是一种将个体与总体进行融合的医学变革,它展现了数字化时代健康革命的价值核心即以患者为中心的医学道德形态,才能让更多的人参与到医疗大数据平台建设之中。
大数据、基因组学、移动医疗和精准医学的基本原理,是连通最小行动者和最大数据计算之总体,这是现代医疗技术在大数据时代展现的伦理特质。大数据对个人和集体相互关系的重新定位无论对个人还是集体都产生了不可低估的影响——它提供了在一个日益个体化的现代社会,个人与集体密不可分的结合方式,迫使个人重新思考集体性或总体性价值的时代意蕴。当然,这种思考必须以对个人的自由、尊严和权利的维护为前提。与此同时,从群体出发或从整体出发的伦理理念重新获得了应有地位,并与强调关联性思维、整体和谐理念的中国伦理文化构成一种内在契合。而这正是大数据时代生命医学伦理学最引人瞩目的发展方向。

关于医疗数据分析平台和医疗数据分析平台哪个好的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 医疗数据分析平台的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于医疗数据分析平台哪个好、医疗数据分析平台的信息别忘了在本站进行查找喔。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:医疗数据集成平台(医疗数据集哪里来的)
下一篇:全国电视节目预告表(全国电视节目预告表查询)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~