java开发的大数据平台(java做大数据开发)

网友投稿 434 2023-02-25

本篇文章给大家谈谈java开发的大数据平台,以及java做大数据开发对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享java开发的大数据平台的知识,其中也会对java做大数据开发进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

北大青鸟设计培训:学习Java应该了解的大数据和框架?

很多人都在知道,计算机行业的发展是非常迅速的,软件开发人员想要跟上时代的发展,最重要的就是不断挑战自己。
在学习软件开发的过程,前期学习的知识是远远不够的,需要了解更多的知识,并且挑战更多的复杂性。
现在学习Java语言不能忽略工具和框架的使用,工具和框架的构建越来越复杂。
很多人不知道学习工具和框架有什么用?下面洛阳电脑培训为大家具体了解Java开发应该了解的大数据工具和框架。
一、MongoDB这是一种最受欢迎的,跨平台的,面向文档的数据库。
MongoDB的核心优势是灵活的文档模型,高可用性复制集和可扩展的碎片集群。
洛阳java培训建议可以尝试以多种方式了解MongoDB,例如MongoDB工具的实时监控,内存使用和页面错误,连接,数据库操作,复制集等。
二、Elasticsearch主要是能够为云构建的分布式RESTful搜索引擎。
Elasticsearch主要是使用在Lucene之中的服务器,能够进行分布式多用户能力的全文搜索引擎,并且还是使用在Java的开发中,这是现在很多企业中使用最流行的搜索引擎。
ElasticSearch不仅是一个全文搜索引擎,而且是一个分布式实时文档存储,每个字段都能够被索引并且可以被搜索。
它也是一个具有实时分析功能的分布式搜索引擎,java课程发现它还可以扩展到数百个服务器存储和处理数PB的数据。
三、Cassandra这是一个开源的分布式数据库管理系统,最初由Facebook开发,用于处理许多商用服务器上的大量数据,提供高可用性而无单点故障。
ApacheCassandra是一套开源分布式NoSQL数据库系统。
集GoogleBigTable的数据模型与AmazonDynamo的完全分布式架构于一身。
于2008开源,此后,由于Cassandra良好的可扩展性,被Digg、Twitter等Web2.0网站所采纳,成为了一种流行的分布式结构化数据存储方案。
四、Redis开源(BSD许可证)内存数据结构存储,用作数据库,缓存和消息代理。
Redis是一个开源的,基于日志的Key-Value数据库,用ANSIC编写,支持网络,可以基于内存持久化,并提供多种语言的API。
Redis有三个主要功能,洛阳IT培训认为可以将它与许多其他竞争对手区分开来:Redis是一个将数据完全存储在内存中的数据库,仅使用磁盘用于持久性目的。

Java程序员使用的20几个大数据工具

最近我问了很多Java开发人员关于最近12个月内他们使用的是什么大数据工具。

这是一个系列,主题为:

- 语言

- web框架

- 应用服务器

- SQL数据访问工具

- SQL数据库

- 大数据

- 构建工具

- 云提供商

今天我们就要说说大数据。根据维基百科,大数据是数据集的一个广义的术语,并且该数据集是如此庞大和复杂,以致于传统的数据处理应用程序无法胜任。

在许多情况下,使用SQL数据库用于存储/检索数据就足够了。但在另一些情况下,要么SQL数据库规模不够,要么还有更好的工具。这一切都取决于使用情况。

现在让我们来讨论一下存储/处理数据用的不同的非SQL工具——NoSQL数据库,内存缓存,全文搜索引擎,实时流,图形数据库,等等。

MongoDB—— 一种流行的,跨平台的面向文档的数据库。

Elasticsearch——专为云而构建的分布式REST风格搜索引擎。

Cassandra——一个开源的分布式数据库管理系统,最初由Facebook开发,被设计用来处理横跨多个商用服务器的大量数据,提供了无单点故障的高度可用性。

Redis—— 一个开源的(BSD许可),内存数据结构存储,作为数据库、缓存和消息代理使用。

Hazelcast——基于Java的开源内存数据网格。

EHCache——一种被广泛使用的开源Java分布式缓存,用于通用缓存、Java EE和轻量级容器。

Hadoop——用Java编写的一个开源软件框架,用于分布式存储和对在计算机集群上的超大型数据集的分布式处理。

Solr——一个开源的企业搜索平台,用Java编写的,来自于Apache Lucene项目。

Spark——Apache Software Foundation中最活跃的项目,一个开源的集群计算框架。

Memcached—— 一个通用的分布式内存缓存系统。

Apache Hive——提供了Hadoop之上类似于SQL的层。

Apache Kafka—— 一个高通量、分布式的发布-订阅式消息系统,最初开发在LinkedIn上。Windows上脱离Cygwin运行Apache Kafka

Akka—— 一个工具包和运行时,用于在JVM上构建高度并行的、分布式的、有弹性的消息驱动的应用程序。

HBase—— 一个开源的,非关系型的,分布式数据库,在谷歌的BigTable后建模,用Java编写,并运行在HDFS上。

Neo4j——用Java实现的开源图形数据库。

CouchBase——一个开源的、面向文档的分布式NoSQL数据库,特别为了交互式应用而优化。

Apache Storm——开源的分布式实时计算系统。

CouchDB——使用JSON来存储数据的面向文档的开源NoSQL数据库。

Oracle Coherence—— 一个内存的数据网格解决方案,通过提供快速访问常用数据的渠道,使得企业可预测地扩展关键任务应用程序。

Titan—— 一个可扩展的图形数据库,优化的目的在于存储和查询包含数千亿顶点和边的图形,分布在多机集群。

Amazon DynamoDB——一个快速、灵活、完全管理的NoSQL数据库服务,用于在任何规模需要一致的、个位数毫秒延迟的所有应用程序。

Amazon Kinesis—— 用于在AWS上的流数据的实时平台。

Datomic—— 一个用Clojure写的完全事务式的,支持云的,分布式数据库。

学习Java的同学注意了!!!

学习过程中遇到什么问题或者想获取学习资源的话,欢迎加入Java学习交流群,群号码:495273252  【长按复制】  我们一起学Java!

什么是java大数据

大数据就是无法通过人工的方式来完成数据分析和处理,需要借助工具才能完成相应的数据处理。大数据通常有3个特征:数量,种类,速度。准确的来说可以用大量,多样性,速度快以及价值高和密度低这四大特征来描述大数据。
一、大量性,数据量的级别从GB至、PB、乃至ZB上升,可称为海量,巨量甚至超量。并且以很快的速度在增长。最为典型的就是我们使用的微信,每天都会产生上亿级别的数据,来自不同领域,不同平台的用户都会产生大量的数据,这些数据是在不断的增长的,并且每个时间点都是不一样的,面对这样高速的增加,需要支撑的服务也是有要求的,这就需要有高并发高吞吐量的服务器来支撑。
二、多样性。数据信息由原来的简单数值、字符和文本向网页、图片、视频、图像和位置信息等半结构化和非结构化的数据类型发展,并且有一个通过的特征,信息大多分布在不同的地理位置、不同的存储设备以及不同的数据管理平台。简单的总结为三点:(1)数据来源多,和我们生活密切相关的社交应用像微博、微信、社交网站等等。(2)数据类型繁多,来自同一个平台可能就有不同的数据类型,图片,视频等等。(3)数据之间的关联性强,交互频繁,大型电子商务网站和社交网络中,一些用户的点击行为在一定程度上反映了该用户潜在的兴趣爱好和需求,链接之间的关联性是很强的。
三、快速化,大数据多数据的处理也是有一定的要求的,有的应用要求对数据的处理做到实时、快速。比较常见的就是我们最好的1元购,每次都有来自不同区域的海量数据,要在一定的时间内完成数据的计算和分析,这就需要将分布式计算、并行计算等等深度的结合才能满足需求的。
四、价值高密度低,我们经常会看到很多虚假的信息,通常情况下正在有价值的信息还是很分散的、密度非常低的,要在海量中寻求有价值的信息还是很有技术要求的。

关于java开发的大数据平台和java做大数据开发的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 java开发的大数据平台的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于java做大数据开发、java开发的大数据平台的信息别忘了在本站进行查找喔。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Jmeter逻辑控制器事务控制器使用方法解析
下一篇:在线数据录入平台(线上数据录入员)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~