本篇文章给大家谈谈在线数据挖掘平台,以及数据挖掘引擎对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
今天给各位分享在线数据挖掘平台的知识,其中也会对数据挖掘引擎进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
现在市面上有哪些好用的数据挖掘工具或者平台?
现在市面上用得最多的数据挖掘工具要数思迈特软件Smartbi Mining。它是是思迈特软件Smartbi旗下的产品。思迈特软件Smartbi Mining通过深度数据建模,可以为你提供预测能力,支持多种高效实用的机器学习算法,包含了分类、回归、聚类、预测、关联,5大类机器学习的成熟算法。
其中包含了多种可训练的模型:逻辑回归、决策树、随 机森林、朴素贝叶斯、支持向量机、线性回归、K均值、DBSCAN、高斯混合模型。除提供主要算法和建模功能外,思迈特软件Smartbi Mining数据挖掘平台还提供了必不可少的数据预处理功能。
还包括字 段拆分、行过滤与映射、列选择、随机采样、过滤空值、合并列、合并行、JOIN、行选择、去除重复值、排序、增加序列号、增加计算字段等。
数据挖掘中通常涉及到四种任务:
分类:将熟悉的结构概括为新数据的任务
聚类:在数据中以某种方式查找组和结构的任务,而不需要在数据中使用已注意的结构。
关联规则学习:查找变量之间的关系
回归:旨在找到一个函数,用最小的错误来模拟数据。
思迈特软件Smartbi是国家认定的“高新技术企业”,广东省认定的“大数据培育企业”, 广州市认定的“两高四新企业”,获得了来自国家、地方政府、国内外权威分析机构、行业组织、知名媒体的高度关注和认可,斩获“大数据百强企业”。
思迈特软件Smartbi也是“中国十佳商业智能方案商”、“中国科技创新企业100强”等100+荣誉奖项!凭借NLP和数据挖掘功能入选Gartner“中国AI创业公司代表厂商(2020)”,凭借Eagle自助分析平台入选“Gartner 增强分析2020代表厂商”。
数据挖掘工具靠不靠谱,来试试Smartbi,思迈特软件Smartbi经过多年持续自主研发,凝聚大量商业智能最佳实践经验,整合了各行业的数据分析和决策支持的功能需求。满足最终用户在企业级报表、数据可视化分析、自助探索分析、数据挖掘建模、AI智能分析等大数据分析需求。
思迈特软件Smartbi个人用户全功能模块长期免费试用
马上免费体验:Smartbi一站式大数据分析平台
数据挖掘工具有哪些?
数据挖掘工具有很多,但我觉得思迈特软件Smartbi Mining数据挖掘平台好用,它通过深度数据建模,为企业提供预测能力支持文本分析、五大类算法和数据预处理,并为用户提供一站式的流程式建模、拖拽式操作和可视化配置体验。
思迈特软件Smartbi Mining数据挖掘平台支持多种高效实用的机器学习算法,包含了分类、回归、聚类、预测、关联,5大类机器学习的成熟算法。其中包含了多种可训练的模型:逻辑回归、决策树、随 机森林、朴素贝叶斯、支持向量机、线性回归、K均值、DBSCAN、高斯混合模型。
除提供主要算法和建模功能外,思迈特软件Smartbi Mining数据挖掘平台还提供了必不可少的数据预处理功能,包括字 段拆分、行过滤与映射、列选择、随机采样、过滤空值、合并列、合并行、JOIN、行选择、去除重复值、排序、增加序列号、增加计算字段等。
内置5大类机器学习成熟算法,支持文本分析处理,支持使用Python扩展挖掘算法, 支持使用SQL扩展数据处理能力。思迈特软件Smartbi Mining易学易用,一站式完成数据处理和建模,你值得一试。
数据挖掘工具靠不靠谱,来试试Smartbi,思迈特软件Smartbi经过多年持续自主研发,凝聚大量商业智能最佳实践经验,整合了各行业的数据分析和决策支持的功能需求。满足最终用户在企业级报表、数据可视化分析、自助探索分析、数据挖掘建模、AI智能分析等大数据分析需求。
思迈特软件Smartbi个人用户全功能模块长期免费试用
马上免费体验:Smartbi一站式大数据分析平台
北大青鸟java培训:八个最佳的数据中心开源挖掘工具?
数据挖掘在线数据挖掘平台,又称为资料探勘、数据采矿。
它是数据库知识发现(英语在线数据挖掘平台:Knowledge-DiscoveryinDatabases在线数据挖掘平台,简称:KDD)中的一个步骤在线数据挖掘平台,是一个挖掘和分析大量数据并从中提取信息的过程。
其中一些应用包括市场细分-如识别客户从特定品牌购买特定产品的特征在线数据挖掘平台,欺诈检测-识别可能导致在线欺诈的交易模式等。
在本文中,贵阳电脑培训http://www.kmbdqn.cn/整理了进行数据挖掘的8个最佳开源工具。
1、WekaWEKA作为一个公开的数据挖掘工作平台,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及在新的交互式界面上的可视化。
2、RapidMinerRapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。
它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。
3、OrangeOrange是一个基于组件的数据挖掘和机器学习软件套装,它的功能即友好,又很强大,快速而又多功能的可视化编程前端,以便浏览数据分析和可视化,基绑定了Python以进行脚本开发。
它包含了完整的一系列的组件以进行数据预处理,并提供了数据帐目,过渡,建模,模式评估和勘探的功能。
其由C++和Python开发,它的图形库是由跨平台的Qt框架开发。
4、KnimeKNIME(KonstanzInformationMiner)是一个用户友好,智能的,并有丰演的开源的数据集成,数据处理,数据分析和数据勘探平台。
5、jHepWorkjHepWork是一套功能完整的面向对象科学数据分析框架。
Jython宏是用来展示一维和二维直方图的数据。
该程序包括许多工具,可以用来和二维三维的科学图形进行互动。
6、ApacheMahoutApacheMahout是ApacheSoftwareFoundation(ASF)开发的一个全新的开源项目,其主要目标是创建一些可伸缩的机器学习算法,供开发人员在Apache在许可下免费使用。
该项目已经发展到了它的最二个年头,目前只有一个公共发行版。
Mahout包含许多实现,包括集群、分类、CP和进化程序。
此外,通过使用ApacheHadoop库,Mahout可以有效地扩展到云中。
7、ELKIELKI(EnvironmentforDevelopingKDD-ApplicationsSupportedbyIndex-Structures)主要用来聚类和找离群点。
ELKI是类似于weka的数据挖掘平台,用java编写,有GUI图形界面。
可以用来寻找离群点。
国内有哪些比较好的数据挖掘工具呢?
国内比较好的数据挖掘工具有很多,比如思迈特软件Smartbi。
思迈特软件Smartbi是中国自助型BI领导者,它简单易用,人人可用。可以解放IT部门,让业务人员自主、灵活、多样的可视化分析,无需任何技术,数秒实现数据可视化。借助思迈特软件Smartbi,企业可以充分发掘数据价值,告别数据孤岛。思迈特软件Smartbi性能优异,亿级数据,秒级响应,实施周期以星期计算,支持PC、移动端、大屏多种终端。
思迈特软件Smartbi大数据分析工具的特点:
1.灵动的可视分析,零编码、可视化数据分析,即时分享数据见解。几分钟生成分析结果,数秒内发现知识的真知灼见。而且用户在接收到他人分享的数据后,享有与原作者一样的分析功能,大大提升了知识转移和数据分析的效率。
2.提供切换自如的多屏体验,他拥有移动端、普通电脑端、大屏显示等多种终端展示解决方案,让用户随时随地对关心的数据了如指掌。
思迈特软件Smartbi通过深度数据建模,为企业提供预测能力支持文本分析、五大类算法和数据预处理,并为用户提供一站式的流程式建模、拖拽式操作和可视化配置体验。思迈特软件Smartbi经过多年持续自主研发,凝聚大量商业智能最佳实践经验,整合了各行业的数据分析和决策支持的功能需求。满足最终用户在企业级报表、数据可视化分析、自助探索分析、数据挖掘建模、AI智能分析等大数据分析需求。
思迈特软件Smartbi个人用户全功能模块长期免费试用
马上免费体验:Smartbi一站式大数据分析平台
50个数据挖掘学习资源网站 收藏!
来自经管之家(原人大经济论坛)
经管之家(原人大经济论坛)的会员小伙伴吐血整理了自己在学习数据分析和数据外加过程中常用的国内外数据资源平台,在教程学习之外更能开阔视野,对自己的学习大有裨益。赶紧拿回去搜藏吧!有些网站可能需要翻墙哦~
知识型企业研究中心
http://business.queensu.ca/index.php
英国谢菲尔德大学自然语言处理研究组
http://nlp.shef.ac.uk/
PCAI
http://www.pcai.com/
美国印地安那大学人工智能/认知科学报告和再版文件汇编
http://www.cs.indiana.edu/%7eleake/INDEX.html
美国橡树岭国家实验室图像处理和机器视觉研究小组
http://www.ornl.gov/sci/ismv/
人工智能研究者俱乐部
http://www.souwu.com/
DFKI人工智能研究所
http://www.dfki.uni-kl.de/
数据管理前言技术国际研讨会(中国,上海,2006)
http://www.iipl.fudan.edu.cn/DM06/index.htm
媒体计算与WEB智能实验室(复旦大学)
http://www.cs.fudan.edu.cn/mcwil/irnlp/
奥地利人工智能研究所机器学习和数据挖掘小组
http://www.oefai.at/oefai/ml/mldm/
加拿大渥太华大学知识获取与智能化学习研究小组
http://www.site.uottawa.ca/tanka/kaml.html
美国麻省理工大学生物与计算学习研究中心
http://cbcl.mit.edu/
德国乌尔姆大学人工神经网络小组
http://www.informatik.uni-ulm.de/ni/forschung/ann.html
优秀知识发现网络
http://www.kdnet.org/
奥地利维也纳医科大学脑研究中心医学控制和人工智能学院
http://www.ai.univie.ac.at/
美国伍斯特工学院人工智能研究小组
http://www.cs.wpi.edu/Research/airg/
微软研究-机器学习和应用统计研究小组
http://research.microsoft.com/research/mlas/
英国爱丁堡大学信息学校人工智能应用学院
http://www.aiai.ed.ac.uk/
北京大学计算语言学研究所
http://www.icl.pku.edu.cn/
哈尔滨工业大学智能技术与自然语言处理实验室
http://www.insun.hit.edu.cn/default_cn.asp
加州大学伊荣/尔湾分校机器学习小组
http://www.ics.uci.edu/~mlearn/Machine-Learning.html
DMI:数据挖掘学院
http://www.cs.wisc.edu/dmi/
数据挖掘:原理,算法及应用
http://www.cs.unc.edu/Courses/comp290-90-f04/
国家数据挖掘中心
http://www.ncdm.uic.edu/
IBM智能情报系统研究中心
http://www.almaden.ibm.com/software/disciplines/iis/
清华大学知识工程研究室
http://keg.cs.tsinghua.edu.cn/
数据挖掘和数据仓库
http://www.crm2day.com/data_mining/
数据挖掘课程
http://cs.nju.edu.cn/zhouzh/zhouzh.files/course/dm.htm
人工智能研究实验室
http://www.cs.iastate.edu/~honavar/aigroup.html
美国人工智能协会
http://www.aaai.org/home.html
知识媒体学会
http://kmi.open.ac.uk/index.cfm
WEB数据挖掘实验室
http://www.wdmlab.cn/
中国科大博纳数据挖掘中心
http://bona.ustc.edu.cn/
西南财经大学商务数据挖掘中心
http://riem.swufe.edu.cn/dataminingcenter/
国际数据挖掘技术研究中心
http://59.77.6.145/dmlab/DesktopDefault.aspx
互联网数据挖掘服务中心
http://idm.yatio.com/index.html
中科院数据技术与知识经济研究中心
http://www.dtke.ac.cn/
机器学习研究室
http://www.cald.cs.cmu.edu/
数据挖掘工程小组
http://www.chem-eng.utoronto.ca/~datamining/
查尔斯顿学院的信息发现
http://di.cofc.edu/
数据挖掘技能
http://www.statsoft.com/textbook/stdatmin.html
智能科学网站
http://www.intsci.ac.cn/
数据挖掘词汇表
http://www.twocrows.com/glossary.htm
数字经济研究中心
http://w4.stern.nyu.edu/ceder/
诊断试验评价与数据挖掘
http://statdtedm.6to23.com/
统计分析与数据挖掘实验室
http://www.bistudy.com/
Lotus知识发现服务器
http://www.chinakm.com/share/list.asp
知识发现新进展与成果概述
http://202.113.96.26/tjcbe/xueshubaogao/yangbingru.ppt
UCI数据库知识发现
http://kdd.ics.uci.edu/
数据挖掘与知识发现软件
http://www.kdnuggets.com/software/index.html
以上是小编为大家分享的关于50个数据挖掘学习资源网站 收藏!的相关内容,更多信息可以关注环球青藤分享更多干货
数据挖掘什么软件简单?
数据挖掘用什么软件
1.R是用于统计分析和图形化的计算机语言及分析工具;
2.Weka可能是名气最大的开源机器学习和数据挖掘软件,但用起来并不方便,界面也简单了点;
3.Tanagra 是使用图形界面的数据挖掘软件;4.RapidMiner现在流行的势头在上升,但它的操作方式和商用软件差别较大,不支持分析流程图的方式,当包含的运算符比较多的时候就不容易查看了;
5.KNIME和Orange看起来都不错,Orange界面看上去很清爽,但我发现它不支持中 文。推荐KNIME,同时安装Weka和R扩展包。
对于普通用户可以选 用界面友好易于使用的软件,对于希望从事算法开发的用户则可以根据软件开发工具不同(Java、R、C++、Python等)来选择相应的软件。
求推荐简单好用的数据挖掘软件 10分
那肯定是SPSS啊,网上自学教程也一堆,如果你不追求特别专业的,只是想数据可视化的基础上有意思数据挖掘的功能,也可以用watson *** ytics,它还支持自然语言呢
常用的数据挖掘工具有哪些
RapidMiner、R、Weka、KNIME、GGobi、Orange,都是优秀的挖掘工具,可以依据自己的需要选择。
常用数据挖掘工具有哪些
EXCEL MATLAB Origin 等等
当前流行的图形可视化和数据分析软件有Matlab,Mathmatica和Maple等。这些软件功能强大,可满足科技工作中的许多需要,但使用这些软件需要一定的计算机编程知识和矩阵知识,并熟悉其中大量的函数和命令。而使用Origin就像使用Excel和Word那样简单,只需点击鼠标,选择菜单命令就可以完成大部分工作,获得满意的结果。 但它又比excel要强大些。一般日常的话可以用Excel,然后加载宏,里面有一些分析工具,不过有时需要数据库软件支持
学习数据挖掘一般要学哪些软件和工具
1、WEKA
WEKA 原生的非 Java 版本主要是为了分析农业领域数据而开发的。该工具基于 Java 版本,是非常复杂的,并且应用在许多不同的应用中,包括数据分析以及预测建模的可视化和算法。与 RapidMiner 相比优势在于,它在 GNU 通用公共许可证下是免费的,因为用户可以按照自己的喜好选择自定义。
WEKA 支持多种标准数据挖掘任务,包括数据预处理、收集、分类、回归分析、可视化和特征选取。添加序列建模后,WEKA 将会变得更强大,但目前不包括在内。
2、RapidMiner
该工具是用 Java 语言编写的,通过基于模板的框架提供先进的分析技术。该款工具最大的好处就是,用户无需写任何代码。它是作为一个服务提供,而不是一款本地软件。值得一提的是,该工具在数据挖掘工具榜上位列榜首。另外,除了数据挖掘,RapidMiner 还提供如数据预处理和可视化、预测分析和统计建模、评估和部署等功能。更厉害的是它还提供来自 WEKA(一种智能分析环境)和 R 脚本的学习方案、模型和算法。
RapidMiner 分布在 AGPL 开源许可下,可以从 SourceForge 上下载。SourceForge 是一个开发者进行开发管理的集中式场所,大量开源项目在此落户,其中就包括 *** 使用的 MediaWiki。
3、NLTK
当涉及到语言处理任务,没有什么可以打败 NLTK。NLTK 提供了一个语言处理工具,包括数据挖掘、机器学习、数据抓取、情感分析等各种语言处理任务。
而您需要做的只是安装 NLTK,然后将一个包拖拽到您最喜爱的任务中,您就可以去做其他事了。因为它是用 Python 语言编写的,你可以在上面建立应用,还可以自定义它的小任务。
4、Orange
Python 之所以受欢迎,是因为它简单易学并且功能强大。如果你是一个 Python 开发者,当涉及到需要找一个工作用的工具时,那么没有比 Orange 更合适的了。它是一个基于 Python 语言,功能强大的开源工具,并且对初学者和专家级的大神均适用。
此外,你肯定会爱上这个工具的可视化编程和 Python 脚本。它不仅有机器学习的组件,还附加有生物信息和文本挖掘,可以说是充满了数据分析的各种功能。
5、KNIME
数据处理主要有三个部分:提取、转换和加载。 而这三者 KNIME 都可以做到。 KNIME 为您提供了一个图形化的用户界面,以便对数据节点进行处理。它是一个开源的数据分析、报告和综合平台,同时还通过其模块化数据的流水型概念,集成了各种机 器学习的组件和数据挖掘,并引起了商业智能和财务数据分析的注意。
KNIME 是基于 Eclipse,用 Java 编写的,并且易于扩展和补充插件。其附加功能可随时添加,并且其大量的数据集成模块已包含在核心版本中。
6、R-Programming
如果我告诉你R项目,一个 GNU 项目,是由 R(R-programming简称,以下统称R)自身编写的,你会怎么想?它主要是由 C 语言和 FORTRAN 语言编写的,并且很多模块都是由 R 编写的,这是一款针对编程语言和软件环境进行统计计算和制图的免费软件。
R语言被广泛应用于数据挖掘,以及开发统计软件和数据分析中。近年来,易用性和可扩展性也大大提高了 R 的知名度。除了数据,它还提供统计和制图技术,包括线性和非线性建模,经典的统计测试,时间序列分析、分类、收......
学习数据挖掘一般要学哪些软件和工具
1、WEKA
WEKA 原生的非 Java 版本主要是为了分析农业领域数据而开发的。该工具基于 Java 版本,是非常复杂的,并且应用在许多不同的应用中,包括数据分析以及预测建模的可视化和算法。与 RapidMiner 相比优势在于,它在 GNU 通用公共许可证下是免费的,因为用户可以按照自己的喜好选择自定义。
WEKA 支持多种标准数据挖掘任务,包括数据预处理、收集、分类、回归分析、可视化和特征选取。添加序列建模后,WEKA 将会变得更强大,但目前不包括在内。
2、RapidMiner
该工具是用 Java 语言编写的,通过基于模板的框架提供先进的分析技术。该款工具最大的好处就是,用户无需写任何代码。它是作为一个服务提供,而不是一款本地软件。值得一提的是,该工具在数据挖掘工具榜上位列榜首。另外,除了数据挖掘,RapidMiner 还提供如数据预处理和可视化、预测分析和统计建模、评估和部署等功能。更厉害的是它还提供来自 WEKA(一种智能分析环境)和 R 脚本的学习方案、模型和算法。
RapidMiner 分布在 AGPL 开源许可下,可以从 SourceForge 上下载。SourceForge 是一个开发者进行开发管理的集中式场所,大量开源项目在此落户,其中就包括 *** 使用的 MediaWiki。
3、NLTK
当涉及到语言处理任务,没有什么可以打败 NLTK。NLTK 提供了一个语言处理工具,包括数据挖掘、机器学习、数据抓取、情感分析等各种语言处理任务。
而您需要做的只是安装 NLTK,然后将一个包拖拽到您最喜爱的任务中,您就可以去做其他事了。因为它是用 Python 语言编写的,你可以在上面建立应用,还可以自定义它的小任务。
目前业界常用的数据挖掘分析工具有哪些
数据分析的概念太宽泛了,做需要的是侧重于数据展示、数据挖掘、还是数据存储的?是个人用还是企业、部门用呢?应用的场景是制作简单的个人图表,还是要做销售、财务还是供应链的分析?
那就说说应用最广的BI吧,企业级应用,其实功能上已经涵盖了我上面所述的部分,主要用于数据整合,构建分析,展示数据供决策分析的,譬如FineBI,是能够”智能”分析数据的工具了。
哪个软件建立数据库比较简单好用
随着数据大数据的发展,数据安全已经上升到一个很高的高度。随着国家对数据安全的重视,国产数据库开始走进中国个大企业,其中不乏 *** 、国企。
实时数据库系统是开发实时控制系统、数据采集系统、CIMS系统等的支撑软件。在流程行业中,大量使用实时数据库系统进行控制系统监控,系统先进控制和优化控制,并为企业的生产管理和调度、数据分析、决策支持及远程在线浏览提供实时数据服务和多种数据管理功能。实时数据库已经成为企业信息化的基础数据平台,可直接实时采集、获取企业运行过程中的各种数据,并将其转化为对各类业务有效的公共信息,满足企业生产管理、企业过程监控、企业经营管理之间对实时信息完整性、一致性、安全共享的需求,可为企业自动化系统与管理信息系统间建立起信息沟通的桥梁。帮助企业的各专业管理部门利用这些关键的实时信息,提高生产销售的营运效率。如果你想定制这款国产数据库 可以打 前面是 一三六 中间是 六一二零 末尾是 四一四七
北京开运联合信息技术股份有限公司-实时性工业数据库软件(CreatRun Database )
实时性工业数据库软件(CreatRun Database )是什么?
1、实时性工业数据库软件(CreatRun Database ) 是开运联合公司针对行业应用,独立研发的,拥有全部自主知识产权的企业级实时/历史数据库平台。为企业监控生产情况、计算性能指标、进行事故分析和对设备启停分析诊断、故障预防等提供重要的数据保障。
2、实时性工业数据库软件(CreatRun Database ) 可广泛用于工业控制自动化数据的高速采集和存储,提供高速、海量数据存储和基础分析能力。
3、实时性工业数据库软件(CreatRun Database ) 可随时观察以及在线分析生产过程。长期保存的历史数据不仅可以重现历史生产情况,也使大规模数据挖掘成为可能。 提供企业生产信息管理解决方案,可以有效应对“从小到大” “由近及远” 的各种企业级数据应用。
4、CreatRun Database 可在线按照时间序列以毫秒级精度自动采集企业的各类过程自动化系统中的生产数据,高效压缩并存储。同时可向用户和应用程序提供实时和历史数据,使得用户可随时观察以及在线分析生产过程。长期保存的历史数据不仅可以重现历史生产情况,也使大规模数据挖掘成为可能。
【工业软件开发】实时性工业数据库软件(CreatRun Database )系统主要技术指标:
支持数据类型:digital、int16、int32、float16、float32、float64、String等类型
标签容量:200,000 Tag
数据容量:TB级
客户端并发用户数:500 个
生产过程数据采集时间响应速度:<500 毫秒
时间戳分辨率:毫秒
存储速度:100,000 输入值/秒存档数据回取事务吞吐量:2,000,000 输出值/秒
实时性工业数据库软件(CreatRun Database )系统特性——高可用性:
1、高效的数据存储策略及压缩算法“死区例外+可变斜率压缩算法 ”,精确到每个Tag的压缩配置,有效提高了历史数据存储性能,节约磁盘空间.
2、高速的数据缓存机制,使并行访问锁域粒度精确到“Block(1KBytes)”,实现了并行访问能力的最大化。使历史数据访问路由复杂度“最小化、均衡化,扁平化”,不界定“冷热”数据,所有数据访问时间成本一致,同时提供均衡访问特性和最大远程数据访问友好度。
3、Creat RUN ......
数据挖掘工具一般都有哪些
数据挖掘工具有国外的Qlik,国内的有永洪,收费是肯定的,你可以先去找些可以免费试用的挖掘工具,国内的ETHINK平台好像可以
数据挖掘工具有哪些?
SQL Server是数据库,但内建数据挖掘功能,若提到工具的话,大概有SAS, SPSS, Statistica(Dell), R, Revolution R...
关于在线数据挖掘平台和数据挖掘引擎的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
在线数据挖掘平台的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于数据挖掘引擎、在线数据挖掘平台的信息别忘了在本站进行查找喔。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
暂时没有评论,来抢沙发吧~