c语言sscanf函数的用法是什么
285
2023-02-21
Java将CSV的数据发送到kafka的示例
为什么将CSV的数据发到kafka
flink做流式计算时,选用kafka消息作为数据源是常用手段,因此在学习和开发flink过程中,也会将数据集文件中的记录发送到kafka,来模拟不间断数据;
整个流程如下:
您可能会觉得这样做多此一举:flink直接读取CSV不就行了吗?这样做的原因如下:
首先,这是学习和开发时的做法,数据集是CSV文件,而生产环境的实时数据却是kafka数据源;
其次,java应用中可以加入一些特殊逻辑,例如数据处理,汇总统计(用来和flink结果对比验证);
另外,如果两条记录实际的间隔时间如果是1分钟,那么Java应用在发送消息时也可以间隔一分钟再发送,这个逻辑在flink社区的demo中有具体的实现,此demo也是将数据集发送到kafka,再由flink消费kafka,地址是:https://github.com/ververica/sql-training
如何将CSV的数据发送到kafka
前面的图可以看出,读取CSV再发送消息到kafka的操作是Java应用所为,因此今天的主要工作就是开发这个Java应用,并验证;
版本信息
JDK:1.8.0_181
开发工具:IntelliJ IDEA 2019.2.1 (Ultimate Edition)
开发环境:Win10
Zookeeper:3.4.13
Kafka:2.4.0(scala:2.12)
关于数据集
本次实战用到的数据集是CSV文件,里面是一百零四万条淘宝用户行为数据,该数据来源是阿里云天池公开数据集,我对此数据做了少量调整;
此CSV文件可以在CSDN下载,地址:https://download.csdn.net/download/boling_cavalry/12381698
也可以在我的Github下载,地址:https://raw.githubusercontent.com/zq2599/blog_demos/master/files/UserBehavior.7z
该CSV文件的内容,一共有六列,每列的含义如下表:
列名称
说明
用户ID
整数类型,序列化后的用户ID
商品ID
整数类型,序列化后的商品ID
商品类目ID
整数类型,序列化后的oQMxQ商品所属类目ID
行为类型
字符串,枚举类型,包括('pv', 'buy', 'cart', 'fav')
时间戳
行为发生的时间戳
时间字符串
根据时间戳字段生成的时间字符串
关于该数据集的详情,请参考《准备数据集用于flink学习》
Java应用简介
编码前,先把具体内容列出来,然后再挨个实现:
从CSV读取记录的工具类:UserBehaviorCsvFileReader
每条记录对应的Bean类:UserBehavior
Java对象序列化成jsON的序列化类:JsonSerializer
向kafka发送消息的工具类:KafkaProducer
应用类,程序入口:SendMessageApplication
上述五个类即可完成Java应用的工作,接下来开始编码吧;
直接下载源码
如果您不想写代码,您可以直接从GitHub下载这个工程的源码,地址和链接信息如下表所示:
名称
链接
备注
项目主页
https://github.com/zq2599/blog_demos
该项目在GitHub上的主页
git仓库地址(https)
https://github.com/zq2599/blog_demos.git
该项目源码的仓库地址,https协议
git仓库地址(ssh)
git@github.com:zq2599/blog_demos.git
该项目源码的仓库地址,ssh协议
这个git项目中有多个文件夹,本章源码在flinksql这个文件夹下,如下图红框所示:
编码
创建maven工程,pom.xml如下,比较重要的jackson和javacsv的依赖:
xmlns:xsi="http://w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
xmlns:xsi="http://w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
从CSV读取记录的工具类:UserBehaviorCsvFileReader,后面在主程序中会用到java8的Steam API来处理集合,所以UserBehaviorCsvFileReader实现了Supplier接口:
public class UserBehaviorCsvFileReader implements Supplier
private final String filePath;
private CsvReader csvReader;
public UserBehaviorCsvFileReader(String filePath) throws IOException {
this.filePath = filePath;
try {
csvReader = new CsvReader(filePath);
csvReader.readHeaders();
} catch (IOException e) {
throw new IOException("Error reading TaxiRecords from file: " + filePath, e);
}
}
@Override
public UserBehavior get() {
UserBehavior userBehavior = null;
try{
if(csvReader.readRecord()) {
csvReader.getRawRecord();
userBehavior = new UserBehavior(
Long.valueOf(csvReader.get(0)),
Long.valueOf(csvReader.get(1)),
Long.valueOf(csvReader.get(2)),
csvReader.get(3),
new Date(Long.valueOf(csvReader.get(4))*1000L));
}
} catch (IOException e) {
throw new NoSuchElementException("IOException from " + filePath);
}
if (null==userBehavior) {
throw new NoSuchElementException("All records read from " + filePath);
}
return userBehavior;
}
}
每条记录对应的Bean类:UserBehavior,和CSV记录格式保持一致即可,表示时间的ts字段,使用了JsonFormat注解,在序列化的时候以此来控制格式:
public class UserBehavior {
@JsonFormat
private long user_id;
@JsonFormat
private long item_id;
@JsonFormat
private long category_id;
@JsonFormat
private String behavior;
@JsonFormat(shape = JsonFormat.Shape.STRING, pattern = "yyyy-MM-dd'T'HH:mm:ss'Z'")
private Date ts;
public UserBehavior() {
}
public UserBehavior(long user_id, long item_id, long category_id, String behavior, Date ts) {
this.user_id = user_id;
this.item_id = item_id;
this.category_id = category_id;
this.behavior = behavior;
this.ts = ts;
}
}
Java对象序列化成JSON的序列化类:JsonSerializer
public class JsonSerializer
private final ObjectMapper jsonMapper = new ObjectMapper();
public String toJSONString(T r) {
try {
return jsonMapper.writeValueAsString(r);
} catch (JsonProcessingException e) {
throw new IllegalArgumentException("Could not serialize record: " + r, e);
}
}
public byte[] toJSONBytes(T r) {
try {
return jsonMapper.writeValueAsBytes(r);
} catch (JsonProcessingException e) {
throw new IllegalArgumentException("Could not serialize record: " + r, e);
}
}
}
向kafka发送消息的工具类:KafkaProducer:
public class KafkaProducer implements Consumer
private final String topic;
private final org.apache.kafka.clients.producer.KafkaProducer
private final JsonSerializer
public KafkaProducer(String kafkaTopic, String kafkaBrokers) {
this.topic = kafkaTopic;
this.producer = new org.apache.kafka.clients.producer.KafkaProducer<>(createKafkaProperties(kafkaBrokers));
this.serializer = new JsonSerializer<>();
}
@Override
public void accept(UserBehavior record) {
// 将对象序列化成byte数组
byte[] data = serializer.toJSONBytes(record);
// 封装
ProducerRecord
// 发送
producer.send(kafkaRecord);
// 通过sleep控制消息的速度,请依据自身kafka配置以及flink服务器配置来调整
try {
Thread.sleep(500);
}catch(InterruptedException e){
e.printStackTrace();
}
}
/**
* kafka配置
* @param brokers The brokers to connect to.
* @return A Kafka producer configuration.
*/
private static Properties createKafkaProperties(String brokers) {
Properties kafkaProps = new Properties();
kafkaProps.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers);
kafkaProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, ByteArraySerializer.class.getCanonicalName());
kafkaProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, ByteArraySerializer.class.getCanonicalName());
return kafkaProps;
}
}
最后是应用类SendMessageApplication,CSV文件路径、kafka的topic和borker地址都在此设置,另外借助java8的Stream API,只需少量代码即可完成所有工作:
public class SendMessageApplication {
public static void main(String[] args) throws Exception {
// 文件地址
String filePath = "D:\\temp\\202005\\02\\UserBehavior.csv";
// kafka topic
String topic = "user_behavior";
// kafka borker地址
String broker = "192.168.50.43:9092";
Stream.generate(new UserBehaviorCsvFileReader(filePath))
.sequential()
.forEachOrdered(new KafkaProducer(topic, broker));
}
}
验证
请确保kafka已经就绪,并且名为user_behavior的topic已经创建;
请将CSV文件准备好;
确认SendMessageApplication.java中的文件地址、kafka topic、kafka broker三个参数准确无误;
运行SendMessageApplication.java;
开启一个 控制台消息kafka消息,参考命令如下:
./kafka-console-consumer.sh \
--bootstrap-server 127.0.0.1:9092 \
--topic user_behavior \
--consumer-property group.id=old-consumer-test \
--consumer-property consumer.id=old-consumer-cl \
--from-beginning
正常情况下可以立即见到消息,如下图:
至此,通过Java应用模拟用户行为消息流的操作就完成了,接下来的flink实战就用这个作为数据源;
以上就是Java将CSV的数据发送到kafka得示例的详细内容,更多关于Java CSV的数据发送到kafka的资料请关注我们其它相关文章!
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~