运营商大数据平台开发方案(运营商大数据的应用流程主要包括)

网友投稿 307 2023-02-19

本篇文章给大家谈谈运营商大数据平台开发方案,以及运营商大数据的应用流程主要包括对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享运营商大数据平台开发方案的知识,其中也会对运营商大数据的应用流程主要包括进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

运营商如何运用大数据转型升级

首先是传统运营商所提供的服务类型已经从单一的话音结合少量的数据通讯,向多媒体、iptv等多业务叠加模式演变;其次,是价值链的改变,运营商不得不面对为数众多的、并且在逐步壮大的互联网服务提供商和应用提供商,想自己直接经营显然不太现实。但是,以腾讯、百度、新浪等为首的传统互联网巨头认为,三大电信运营商并不会对传统互联网公司以及新兴的移动互联网企业构成威胁,通过合作,互联网公司将与电信运营商实现共赢。如何处理与新兴互联网公司的关系?公司化运作、新的it技术的利用是否是其转型的救命稻草?云、管、端三线布局能否解决管道化的忧虑?这是移动互联网时代,摆在中国移动、中国联通、中国电信三大电信运营商面前的难题。
电信运营商必须深化战略转型,否则将难以应对移动互联网时代的各项挑战
据赛迪顾问数据显示,2012年中国已有超过4亿用户尝试用手机访问互联网,微信用户突破3亿,手机用户上网的频率全面提高。随着未来以智能手机、平板电脑为代表的新式移动互联网终端的不断推出,人们对于移动互联网业务的需求将呈现爆炸式增长趋势。显而易见,移动互联网正在孕育着一个巨大的市场商机。移动互联网产业生态价值链还在重塑过程中,但机遇大于挑战,关键是如何调整商业模式、战略、策略、渠道。
然而,当电信运营商从被动转主动开始拥抱移动互联网所造就的数据时代时,其最强劲的竞争对手互联网巨头已经成为近年来发展最为迅速、灵活、并且创意无限的角色。当前,即便是世界优秀的电信运营商也面临着艰巨的业务转型需要和巨大的发展瓶颈。在移动互联网时代,运营商缺乏互联网运营经验、对终端掌控力度不足、业务创新能力落后、缺乏标准开发能力以及资源使用与管理运营支撑效率低已经成为了运营商全面增长的几个主要的劣势所在。从最新公布的中国移动、2013年一季度财报来看,利润增长几乎停滞,增长显现出疲态。运营商的转型之门若干年后又将重新打开,而不管是“流量经营”和“去电信化”等运营商转型思路,赛迪顾问认为,面临移动互联网带来的庞大的数据挑战,电信运营商的转型之路必须要围绕海量数据所带来的商机作深度挖掘和分析。
海量数据的出现、数据结构变化给运营商的数据管理及分析带来高度挑战
尽管移动互联网时代给电信运营商带来前所未有的机遇,然而正如硬币的两面,这个时代的到来同样也给电信运营商带来了无限的挑战,特别是大数据的挑战。这个挑战主要表现在以下两个方面:其一、传统数据仓库难以满足日益增长的业务数据所带来的存储、计算需求。随着业务发展数据量的增加,应用复杂导致的数据量增加,这些数据量导致了数据存储和处理压力; 数据仓库无法线性扩容,管理难度加大,成本高扩容压力大,效率下降等。其二、传统数据仓库难以满足非结构化数据的处理要求。移动互联网和物联网业务带来的非结构化数据、半结构化数据(如网页、聊天记录)对分析系统提出了不同以往的处理要求,如自然语言处理、网页分类等。下图描述了运营商针对不同业务所应具备的大数据处理模型特征,是运营商急需提升的应用处理能力模型。
图1 电信运营商大数据处理应用模型
从上图看,准实时处理、非实时处理以及oltp/在线事务处理以及在线分析应用四个方向的能力将是电信运营商在主要大数据应用所应具备的能力,也是未来运营商大数据的重要竞争优势的角逐。
利用大数据转型,运营商在行动
其实,各大运营商在面向移动互联时代已经做好了部分准备,而且在应对大数据挑战上逐步提高了竞争意识。
中国电信很早就已经意识到移动互联网时代的到来,并于2005年提出了战略转型的构想,主要目的就是为了应对移动互联网时代的挑战。而当前,中国电信已经提出了“智慧城市”发展战略,其中很重要的技术结合点就是物联网和大数据。基于以上战略,中国电信定位成为智能管道的主导者、综合平台的提供者、内容应用的参与者。而在“流量经营”方面,中国电信从“话务经营”向“流量经营”转型。结合大数据技术,中国电信也将深入idc服务以及智慧城市建设,并发掘移动互联与之结合的商机,重塑转型之路。
中国移动数据部认为,在移动互联网时代,电信运营商需要转型,要以开放的姿态获取更多的合作,而中国移动的阅读、游戏、动漫、音乐等业务都将通过开放合作的方式来寻求发展。通过开放合作平台,中国移动从“移动通信专家”到“移动信息专家”的策略转变,就是为顺应移动互联网时代潮流而做出的改变。这一战略的发展基础就是中国移动针对大数据和云计算研究所获得的应用发展方向。中国移动在大云1.5平台上部署了分析型paas产品,利用bc-hadoop构建大数据处理平台,同时建设了并行数据挖掘系统(bc-pdmetl)以及商务智能平台(bi-paas)等大数据应用平台,为将来在大数据应用和服务市场做了充分准备。
中国联通对大数据的探索源自于2010年中国联通数据大集中策略的提出。2009年,中国联通3g业务正式商用,提出“统一品牌、统一业务、统一包装、统一资费、统一终端政策、统一服务标准”的“六个统一”策略。这意味着中国联通要走一条数据大集中的路线。2012年底,中国联通就已经成功将大数据和hadoop技术引入到移动通信用户上网记录集中查询与分析支撑系统。当前,中国联通已经新增100亿投资重庆大数据计划,显现了其发展大数据,转型自身业务的决心。
总体来看,运营商利用大数据来推动业务转型将是未来电信市场的一个重要方向。电信运营商如果能够通过技术的进步,不断释放其管道中庞大数据的潜在力量,将会成为未来移动互联时代中最大的赢家。

大数据分析系统平台方案有哪些?

大数据分析系统平台方案有很多,其中就有广州思迈特软件Smartbi的大数据分析系统平台方案。大数据分析系统平台方案深度洞察用户数据,帮企业用数据驱动产品改进及运营监控,思迈特软件Smartbi是企业级商业智能和大数据分析品牌,经过多年持续自主研发,凝聚大量商业智能最佳实践经验,整合了各行业的数据分析和决策支持的功能需求。满足最终用户在企业级报表、数据可视化分析、自助探索分析、数据挖掘建模、AI智能分析等大数据分析需求。
Smartbi产品功能设计全面,涵盖数据提取、数据管理、数据分析、数据共享四个环节,帮助客户从数据的角度描述业务现状,分析业务原因,预测业务趋势,推动业务变革。
思迈特软件Smartbi是国家认定的“高新技术企业”,广东省认定的“大数据培育企业”, 广州市认定的“两高四新企业”,获得了来自国家、地方政府、国内外权威分析机构、行业组织、知名媒体的高度关注和认可,斩获“大数据百强企业”、“中国十佳商业智能方案商”、“中国科技创新企业100强”等100+荣誉奖项!
凭借NLP和数据挖掘功能入选Gartner“中国AI创业公司代表厂商(2020)”,凭借思迈特软件Smartbi入选“Gartner?增强分析2020代表厂商”。

技术落地性成大数据竞争赛点,鲲鹏大数据解决方案凭何领先?

文 | 曾响铃

来源 | 科技 向令说(xiangling0815)

新基建浪潮下,作为底层支撑力量的数据与计算正变得越来越重要。

最近,由中国大数据与智能计算产业联盟主办,以“新算力 新基建 新经济”为主题的第二届中国超级算力大会ChinaSC在北京召开,包括国内外院士、知名学者和产业大咖在内的600多人参加,探讨了超级计算、新基建、云计算、大数据、人工智能、区块链等前沿技术进展。

这个奖项的颁出,官方给出的标准是,“能够把当前的各种技术有机的整合在一起,以满足不同应用场景下的各种综合的软硬件及系统方案,集科学性、先进性、稳定性、经济性等众多实际指标于一身,是技术转变为实际应用的关键环节。”

显然,这个权威奖项最关心的,是大数据解决方案在推动技术向实际应用转变的能力,而这也正是当下市场环境对大数据的核心需求。笔者尝试拆解鲲鹏大数据解决方案从宏观到操作层面的布局,希望能给予相关从业者这方面的行业借鉴。

技术竞赛不停, 但大数据需求转向应用落地

数据的价值越来越明显,更好地释放数据价值的技术在不断演化,但是,随着更多政企组织开始着手利用大数据能力帮助现实业务提升,其需求也开始更多倾向于技术能否更好地实现应用落地,大数据解决方案正是为此而生。

以鲲鹏为案例,在推动技术落地的过程中,其大数据解决方案表现出符合时代需要的三大特征,让它在新趋势下占据领先优势,受到客户广泛欢迎并获得ChinaSC权威认可。

1、超高性能仍然是应用落地的最有力支撑

大数据解决方案要推动技术实现各种场景的落地,其前提和支撑,是底层软硬件性能本身要足够强悍,否则,再完善和深度的解决方案,没有性能支撑也只能是空中楼阁。

而也只有性能足够强悍,在应用落地阶段才能够尽可能去满足客户各类数据价值需求。

得益于底层软硬件能力的深度开发,鲲鹏大数据解决方案就拥有超高性能,为应用做好了充分的准备以及支撑。

例如,硬件方面,采用自主研发高性能鲲鹏920处理器,软件方面,则拥有在大数据场景下获得倍级性能提升的独创IO智能预取和Spark机器学习图增强算法。

以鲲鹏与浙江移动的合作为例,2019年,浙江移动相继完成了IT云鲲鹏服务器测试,营业厅前台系统、CRM、计费、大数据、CDN等系统的验证及上线商用。这其中,浙江移动的CRMBOSS系统在鲲鹏大数据方案支撑下,整体得到了较大提升,在规模承载网络运营支撑业务的情况下,该系统现在已经稳定运行一年。

目前,浙江移动围绕网络云,IT云和移动云,已经打造了全球首个运营商领域ICT全场景样板点。

2、全栈方案才能推动技术全面落地

解决方案本身并不是一种具体的技术,其价值在于各种技术的有效融汇,作为统一的输出方式面向政企客户。而在政企客户需求日益加深的情况下,尽可能满足多种场景、多种技术诉求的解决方案,就必须建立一套尽可能完善的全栈体系,将各种技术有机地、系统地、全面地整合在一起。

这正是华为鲲鹏大数据解决方案的体系构成,其基于鲲鹏处理器,构建了端到端打通硬件、操作系统、中间件、大数据软件的全栈体系,并对应进行了全栈性能优化,推动各类技术汇聚成高性能解决方案:

可以看到,这套全栈体系,一方面通过有机整合,能够较为容易地同时满足科学性、先进性、稳定性、经济性等需求(例如,加速特性和大数据组件能够帮助方案更有效率同时成本更低);另一方面,作为全面、完整、一体化的信息化解决方案,也更容易去适应政府、金融、电信、互联网、大企业等不同行业应用需求。

从技术到应用落地,“全栈”成为重要的中间转换环节,不但“无损”,而且“增益”。

3、符合政企个性化需求让技术落地更具现实价值

在最终面向单个客户落地时,大数据解决方案还需要真正贴合这个客户的实际需要,这是从技术到应用落地的“临门一脚”,毕竟,不论性能如何强悍,全栈体系如何完善灵活,落实到客户头上,最终还是需要符合业务实际,产生现实价值。

既要有能力,更需要契合,鲲鹏大数据解决方案就是这么做的。

2019年,江苏省基于鲲鹏架构打造了全国首个省区市县三级政务大数据,未来将有越来越多的政务系统可以由自主可靠的鲲鹏计算平台来承载;

在广西,区内首个鲲鹏产业生态云项目——“壮美广西·玉林政务云(鲲鹏云)”已于不久前上线,这是该市全面推广应用广西数字政务一体化平台的体现,而其推出的广西首个市级公共数据开放管理办法,就与鲲鹏的大数据解决方案紧密相关;

目光转到浙江,在鲲鹏生态落子浙江的过程中,浙江推动形成“用鲲鹏”的共识,城市被当成鲲鹏生态的“试验场”,杭州市政务云已经选用鲲鹏作为算力底座,基于鲲鹏技术架构的解决方案和应用在政府服务场景中得到广泛应用。

总得看来,仅有高高在上的技术而无法产生实际价值的大数据玩法已经行不通,鲲鹏大数据解决方案跨越技术与应用的鸿沟,已经在众多行业、场景和企业中实现落地。

电信行业三巨头中,中国移动已实现鲲鹏大数据解决方案规模商用,中国电信则基于鲲鹏打造了天翼云,中国联通则基于鲲鹏构建了天宫IT系统;政务方面,北京、广东、江苏、浙江、广西等政务云都出现鲲鹏身影,当下其已经成为首选技术路线;在金融行业,鲲鹏正在帮助银行系统加速完成国产化。

可以说,鲲鹏大数据解决方案有力推动了中国数字经济发展,尤其是信息技术应用创新的落地。

领先优势下, 鲲鹏三个角度出发为大数据技术落地“铺路”

1、走得更稳——回应数字时代重要的安全关切

因此,鲲鹏大数据解决方案在安全方面一直加大投入,最典型的,是在底层硬件而非软件层面进行安全保障——鲲鹏920处理器内置硬件加速器、业界首创支持国密算法加速,这种CPU内置加速模块的做法,被称作“内生安全”,配合国密算法在技术上更为安全。

而与通常的大数据解决方案为了保证安全不得不让渡较多的性能随时监控系统运行不同,华为鲲鹏大数据解决方案内生安全的做法,做到了加密对业务性能的损耗低于5%——既解决安全痛点问题,也解决“为了安全需要”本身导致的痛点问题。

2、走得更顺——用兼容性保护既有数据软硬件投资

前文提到政务云大数据解决方案中,与现有的服务器的混合部署,这其中有一个十分重要的兼容性做法——由于鲲鹏大数据解决方案建立在鲲鹏处理器基础之上,而很多政企组织原有的软硬件投资都基于X86架构,所以鲲鹏要让技术的应用落地走得更顺,还需要在技术上完成对X86在部署层面的兼容,这样还能保护政企客户现有的数字化投资。

可以看到,当下的鲲鹏方案已经支持大数据组件TaiShan服务器与其他架构服务器混合部署。

以江苏电信为例,去年7月,其宣布成功上线全球首个基于鲲鹏处理器的运营商大数据平台。作为核心的业务系统,该大数据平台基于鲲鹏处理器的华为TaiShan服务器和开源Hadoop软件构建,承载着江苏电信所有生产系统的运行数据、存储及分析:

在项目进行过程中,双方携手完成基于鲲鹏处理器的开源Hadoop源代码编译,让关键的大数据业务组件在华为TaiShan服务器上的成功部署和运行,在原有集群上实现了传统架构服务器和TaiShan服务器融合部署。

这种兼容的做法,有效结合了江苏电信大数据业务特点和未来演进趋势,且充分发挥鲲鹏处理器的性能,提高了数据存储、计算等资源的使用效率。

3、走得更宽——生态开放才能让大数据拥有内生动力

鲲鹏生态的主要推动者华为一直强调的理念是“硬件开放、软件开源、使能合作伙伴”,在大数据解决方案中,这种理念同样得到了应用。

例如,在鲲鹏全栈方案中,顶层大数据平台就支持华为自研的FusionInsight大数据平台以及开源Apache、开源HDP/CDH、星环大数据平台,可以有效对接各类场景需要。今年8月,星环 科技 就发布了基于鲲鹏的大数据平台软硬件联合解决方案,由星环 科技 的TDH大数据平台提供软件层面优异的功能,由鲲鹏芯片提供硬件层面强大的性能,拥有极致性能、平滑迁移、丰富的场景支持以及快速部署多重优势,为行业创造价值。

此外,鲲鹏主导的数据虚拟化引擎openLooKeng开源,就支持跨数据格式、跨数据源、跨数据中心的海量分析,最终帮助方案的性能大幅度提升,典型的如北明数据资产管理平台V4.0就基于openLooKeng技术,解决了数据资产管理数据冗杂、标准不一、难以管理等痛点问题,为企业守护和挖掘数据的价值。

开放的生态,将帮助更多合作伙伴发展服务器和PC等计算产品,帮助构建高质量的基础软件生态,也让更多生态伙伴获得端、边、云的全场景开发能力,最终促进鲲鹏计算生态的繁荣,也加速大数据行业应用创新。

打好基础、做好标杆, 鲲鹏进入“强者恒强”周期

弥合技术与应用落地的鸿沟后,鲲鹏大数据解决方案拥有越来越多的政企实践,它们中大多数都是行业典型客户,本身既是大数据发展过程中的优质案例。

拥有这些客户资源的鲲鹏,实际上已经进入了强者恒强的发展周期,这不仅仅是因为它获得了诸多标杆合作案例、领先于行业,更重要的还在于,技术到应用实践的通路打通后,实践也将不断反馈技术,不断帮助鲲鹏锤炼自身的技术能力,从而形成有效的正反馈循环。

一旦这种循环形成,大数据解决方案就会进入“飞轮”式发展进程,越转越快、越难以停下,也很难以被后进者追赶,逐步成为政企客户最有竞争优势的选择。

更进一步来看,大数据服务从来都不是孤立存在的,在计算需求多样化的时代,鲲鹏计算产业生态的主要推动者华为在物联网、5G、AI等方面的能力和生态布局,无疑将帮助鲲鹏大数据解决方案有更多横向技术连接和融合的想象空间,满足更多政企客户潜在的创新业务需求。

总而言之,在以鲲鹏大数据解决方案为代表的优质案例引领下,数据与计算的时代正在加速到来,最终,“新算力”将推动“新基建”全面落地,带来“新经济”动能,更多政企客户将享受到技术带来的价值红利。

*本文图片均来源于网络

【完】

曾响铃

1钛媒体、品途、人人都是产品经理等多家创投、 科技 网站年度十大作者;

2虎啸奖评委;

3作家:【移动互联网+ 新常态下的商业机会】等畅销书作者;

4《中国经营报》《商界》《商界评论》《销售与市场》等近十家报刊、杂志特约评论员;

5钛媒体、36kr、虎嗅、界面、澎湃新闻等近80家专栏作者;

6“脑艺人”(脑力手艺人)概念提出者,现演变为“自媒体”,成为一个行业;

7腾讯全媒派荣誉导师、多家 科技 智能公司传播顾问。

大数据在开发中遇到的困难怎么解决方案

大数据时代下的信息技术日存在的问题:
第一:运营商带宽能力与对数据洪流的适应能力面临前所未有的挑战;
第二:大数据处理和分析的能力远远不及理想中水平,数据量的快速增长,对存储技术提出了挑战;同时,需要高速信息传输能力支持,与低密度有价值数据的快速分析、处理能力。
第三:部分早期的Hadoop项目将面临挑战;
第四:大数据环境下通过对用户数据的深度分析,很容易了解用户行为和喜好,乃至企业用户的商业机密,对个人隐私问题必须引起充分重视;
第五:大数据时代的基本特征,决定其在技术与商业模式上有巨大的创新空间,如何创新已成为大数据时代的一个首要问题;
第六:大数据时代对政府制订规则与监管部门发挥作用提出了新的挑战

大数据时代面临挑战的应对策略:
1、合理获取数据
在大数据时代,数据的产生速度飞快而且体量庞大,往往以TB或YB甚至是ZB来衡量。各种机构、个人都在不断地向外产生和发布结构化与非结构化的复杂数据,并进行数据交换,如人们当前最常用的数据来源渠道——互联网,每天的数据交换量已极为惊人。
2、存储随需而变
美国一家知名的 DVD 租赁企业每年都会邀请一些协同处理算法的专家对其用户数据进行分析,从而了解租赁客户的需求。
3、筛选与分析大数据
充分利用数据“洞察”自己身边的人或物,在诸多供给方当中精准地匹配自身需求,从而最大限度地满足自身吁求也是大数据价值的应有之义。
4、理性面对大数据的价值诱惑
毫无疑问,大数据时代将是商业智能“大显身手”的时代。企业利用发达的数据挖掘技术正日益精准地揣摩着消费者心态,并运用各种手段对其“循循善诱” 。
5、云计算和大数据相辅相成
为了满足大数据的需求,商务智能软件必须改变。 关于运营商大数据平台开发方案和运营商大数据的应用流程主要包括的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 运营商大数据平台开发方案的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于运营商大数据的应用流程主要包括、运营商大数据平台开发方案的信息别忘了在本站进行查找喔。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:电商平台api接口服务商(电商支付接口)
下一篇:怎么识别三证合一营业执照(如何识别营业执照是否三证合一)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~