Java多线程之ReentrantReadWriteLock源码解析

网友投稿 268 2023-01-17

Java多线程之ReentrantReadWriteLock源码解析

一、介绍

1.1 ReentrantReadWriteLock

ReentrantReadWriteLock 是一个读写锁,允许多个读或者一个写线程在执行。

内部的 Sync 继承自 AQS,这个 Sync 包含一个共享读锁 ReadLock 和一个独占写锁 WriteLock。

该锁可以设置公平和非公平,默认非公平。

一个持有写锁的线程可以获取读锁。如果该线程先持有写锁,再持有读锁并释放写锁,称为锁降级。

WriteLock支持Condition并且与ReentrantLock语义一致,而ReadLock则不能使用Condition,否则抛出UnsupportedOperationException异常。

public class ReentrantReadWriteLock implements ReadWriteLock {

/** 读锁 */

private final ReentrantReadWriteLock.ReadLock readerLock;

/** 写锁 */

private final ReentrantReadWriteLock.WriteLock writerLock;

/** 持有的AQS子类对象 */

final Sync sync;

abstract static class Sync extends AbstractQueuedSynchronizer {}

static final class NonfairSync extends Sync {}

static final class FairSync extends Sync {}

public static class ReadLock implements Lock {}

public static class WriteLock implements Lock {}

//默认非公平

public ReentrantReadWriteLock() {

this(false);

}

public ReentrantReadWriteLock(boolean fair) {

sync = fair ? new FairSync() : new NonfairSync();

readerLock = new ReadLock(this);

writerLock = new WriteLock(this);

}

public static class ReadLock implements Lock {

private final Sync sync;

protected ReadLock(ReentrantReadWriteLock lock) {

sync = lock.sync;

}

}

public static class WriteLock implements Lock {

private final Sync sync;

protected WriteLock(ReentrantReadWriteLock lock) {

sync = lock.sync;

}

}

}

1.2 state

Sync 继承了 AQS,其中有一个 int 的成员变量 state,int 共32位,这里将其视为两部分,高16位表示读的数量,低16位表示写的数量,这里的数量表示线程重入后的总数量。

abstract static class Sync extends AbstractQueuedSynchronizer {

//继承的一个int的成员变量,将其拆分为高16位和低16位

//private volatile int state;

static final int SHARED_SHIFT = 16;

//读一次,锁增加的值

static final int SHARED_UNIT = (1 << SHARED_SHIFT);

static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1;

static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;

//读的数量

static int sharedCount(int c) { return c >>> SHARED_SHIFT; }

//写的数量

static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }

}

1.3 HoldCounter

读锁使用了一个 ThreadLocal 让每个线程有一个线程私有的 HoldCounter,HoldCounter包含一个线程 id 以及读重入的次数。

查找对应线程的HoldCounter 其实只用一个 ThreadLocalHoldCounter 也足够了。这里为了加快查询,用了两个额外的缓存,即 cachedHoldCounter、firstReader 和 firstReaderHoldCount(后两个组合起来相当于一个 HoldCounter)。

在读锁的相关操作中,先检查 firstReader 是否为当前线程,否则检查 cachedHoldCounter 内部的线程是否为当前线程,如果失败最后会通过 readHolds 来获取当前线程的 HoldCounter。

static final class HoldCounter {

int count = 0;

// 使用线程id,而不是线程的引用。这样可以防止垃圾不被回收

final long tid = getThreadId(Thread.currentThread());

}

static final class ThreadLocalHoldCounter

extends ThreadLocal {

public HoldCounter initialValue() {

return new HoldCounter();

}

}

//使用的ThreadLocal

private transient ThreadLocalHoldCounter readHolds;

//一个缓存

private transient HoldCounter cachedHoldCounter;

//组合起来相当于一个缓存

private transient Thread firstReader = null;

private transient int firstReaderHoldCount;

二、读锁

2.1 读锁的获取

下面讲解 tryAcquireShared 和 tryReadLock,tryReadLock 是一种直接抢占的非公平获取,和 tryAcquireShared 中的非公平获取有所不同。

2.1.1 tryAcquireShared

根据注释

1.检查是否存在其他线程持有的写锁,是的话失败,返回 -1;

2.判断在当前公平状态下能否读,以及是否超过读的最大数量,满足条件则尝试 CAS 修改状态,让 state 加一个单位的读 SHARED_UNIT;修改成功后会根据三种情况,即首次读、firstReader 是当前线程,以及其他情况分别进行处理,成功,返回1;

3.前面未返回结果,会执行 fullTryAcquireShared。

可以将该方法视为 fullTryAcquireShared 的一次快速尝试,如果尝试失败,会在 fullTryAcquireShared 的自旋中一直执行,直到返回成功或者失败。

//ReadLock

public void lock() {

sync.acquireShared(1);

}

//AQS

public final void acquireShared(int arg) {

if (tryAcquireShared(arg) < 0)

doAcquireShared(arg);

}

//Sync

protected final int tryAcquireShared(int unused) {

/*

* Walkthrough:

* 1. If write lock held by another thread, fail.

* 2. Otherwise, this thread is eligible for

* lock wrt state, so ask if it should block

* because of queue policy. If not, try

* to grant by CASing state and updating count.

* Note that step does not check for reentrant

* acquires, which is postponed to full version

* to avoid having to check hold count in

* the more typical non-reentrant case.

* 3. If step 2 fails either because thread

* apparently not eligible or CAS fails or count

* saturated, chain to version with full retry loop.

*/

Thread current = Thread.currentThread();

int c = getState();

// 如果写的数量不是0,且写线程不是当前线程,失败

if (exclusiveCount(c) != 0 &&

getExclusiveOwnerThread() != current)

return -1;

// 获取读的个数

int r = sharedCount(c);

// 如果当前线程想要读,没有被堵塞

// 当前读的数量未超过最大允许的读的个数

// CAS执行成功

if (!readerShouldBlock() &&

r < MAX_COUNT &&

compareAndSetState(c, c + SHARED_UNIT)) {

// 第一次读,修改firstReader和firstReaderHoldCount

if (r == 0) {

firstReader = current;

firstReaderHoldCount = 1;

// 如果当前线程正好是firstReader

} else if (firstReader == current) {

firstReaderHoldCount++;

// 其他情况,经过一系列处理后,使得rh为当前线程的HoldCounter

// 对rh的记数加一

} else {

HoldCounter rh = cachedHoldCounter;

// 如果cached为null或者不是当前线程

if (rh == null || rh.tid != getThreadId(current))

// 从readHolds中get,并修改cached

cachedHoldCounter = rh = readHolds.get();

// 如果cached不是null,但记数为null

// 这种情况表示当前线程的HoldCounter已经被删除,即为null,

// 但cached仍然保留着null之前的那个HoldCounter,

// 为了方便,直接将cached设置给ThreadLocal即可

else if (rh.count == 0)

readHolds.set(rh);

//执行到这里,rh表示当前线程的HoldCounter,记数加1

rh.count++;

}

return 1;

}

// 前面未返回结果,执行第三步

return fullTryAcquireShared(current);

}

2.1.2 fullTryAcquireShared

在上述的简单尝试 tryAcquireShared 未能确定结果后,执行第三步 fullTryAcquireShared 自旋来不断尝试获取读锁,直到成功获取锁返回1,或者满足相应条件认定失败返回-1。

1.其他线程持有写锁,失败

2.当前线程读的尝试满足堵塞条件表示当前线程排在其他线程后面,且当前线程没有持有锁即非重入的情况,失败

3.其他情况则不断自旋CAS,达到最大读的数量会抛出异常,其他情况在成功后返回1。

final int fullTryAcquireShared(Thread current) {

/*

* This code is in part redundant with that in

* tryAcquireShared but is simpler overall by not

* complicating tryAcquireShared with interactions between

* retries and lazily reading hold counts.

*/

HoldCounter rh = null;

for (;;) {

int c = getState();

if (exclusiveCount(c) != 0) {

// 存在其他线程持有写锁,返回-1

if (getExclusiveOwnerThread() != current)

return -1;

// else we hold the exclusive lock; blocking here

// would cause deadlock.

//没有写锁,且该线程排在其他线程后面,应该被堵塞

//如果已经持有读锁,此次获取是重入,可以执行else if 之后的操作;

//否则,会被堵塞,返回-1。

} else if (readerShouldBlock()) {

// Make sure we're not acquiring read lock reentrantly

//检查firstReader

if (firstReader == current) {

// assert firstReaderHoldCount > 0;

} else {

if (rh == null) {

rh = cachedHoldCounter;

if (rh == null || rh.tid != getThreadId(current)) {

//执行到下一步rh是cached或者readHolds.get(),检查rh

rh = readHolds.get();

//在get时,如果不存在,会产生一个新的HoldCounter

//记数为0表示不是重入锁,会删除让其重新为null

if (rh.count == 0)

readHolds.remove();

}

}

//返回失败

if (rh.count == 0)

return -1;

}

}

//达到最大值,不允许继续增加

if (sharedCount(c) == MAX_COUNT)

throw new Error("Maximum lock count exceeded");

//和2.1.1中相似

if (compareAndSetState(c, c + SHARED_UNIT)) {

if (sharedCount(c) == 0) {

firstReader = current;

firstReaderHoldCount = 1;

} else if (firstReader == current) {

firstReaderHoldCount++;

} else {

if (rh == null)

rh = cachedHoldCounter;

if (rh == null || rh.tid != getThreadId(current))

rh = readHolds.get();

else if (rh.count == 0)

readHolds.set(rh);

rh.count++;

cachedHoldCounter = rh; // cache for release

}

return 1;

}

}

}

2.1.3 readerShouldBlock

该方法返回当前线程请求获得读锁是否应该被堵塞,在公平锁和非公平锁中的实现不同

在公平锁中,返回在排队的队列中当前线程之前是否存在其他线程,是的话返回 true,当前线程在队列头部或者队列为空返回 false。

// FairSync

final boolean readerShouldBlock() {

return hasQueuedPredecessors();

}

// AQS

public final boolean hasQueuedPredecessors() {

// The correctness of this depends on head being initialized

// before tail and on head.next being accurate if the current

// thread is first in queue.

Node t = tail; // Read fields in reverse initialization order

Node h = head;

Node s;

return h != t &&

((s = h.next) == null || s.thread != Thread.currentThread());

}

在非公平锁中,队列中存在两个节点,且第二个节点是独占的写节点,会返回 true,使得新来的读线程堵塞。

这种方式只能在第二个节点是请求写锁的情况下返回 true,避免写锁的无限等待;如果写锁的请求节点在队列的其他位置,返回 false,不影响新来的读线程获取读锁。

如果不按照这种方式处理,而按照队列中的顺序进行处理,则只要存在其他线程在读,每次来一个新的线程请求读锁,总是成功,写锁会一直等待下去。

// NonfairSync

final boolean readerShouldBlock() {

/* As a heuristic to avoid indefinite writer starvation,

* block if the thread that momentarily appears to be head

* of queue, if one exists, is a waiting writer. This is

* only a probabilistic effect since a new reader will not

* block if there is a waiting writer behind other enabled

* readers that have not yet drained from the queue.

*/

return apparentlyFirstQueuedIsExclusive();

}

// AQS

final boolean apparentlyFirstQueuedIsExclusive() {

Node h, s;

return (h = head) != null &&

(s = h.next) != null &&

!s.isShared() &&

s.thread != null;

}

2.1.4 tryReadLock

和 fullTryAcquireShared 有相似之处,该方法总是直接去抢占锁,直到其他线程获取写锁返回失败,或者当前当前线程获取读锁返回成功。

//ReadLock

public boolean tryLock() {

return sync.tryReadLock();

}

//Sync

final boolean tryReadLock() {

Thread current = Thread.currentThread();

for (;;) {

int c = getState();

if (exclusiveCount(c) != 0 &&

getExclusiveOwnerThread() != current)

return false;

int r = sharedCount(c);

if (r == MAX_COUNT)

throw new Error("Maximum lock count exceeded");

if (compareAndSetState(c, c + SHARED_UNIT)) {

if (r == 0) {

firstReader = current;

firstReaderHoldCount = 1;

} else if (firstReader == current) {

firstReaderHoldCount++;

} else {

HoldCounter rh = cachedHoldCounter;

if (rh == null || rh.tid != getThreadId(current))

cachedHoldCounter = rh = readHolds.get();

else if (rh.count == 0)

readHolds.set(rh);

rh.count++;

}

return true;

}

}

}

2.2 读锁的释放

tryReleaseShared 在 if/else 中实现了通过 first/cached/readHolds 获取相应的 HoldCounter,并修改其中的记数,记数为0则删除;在 for 中,不断自旋实现 CAS 修改状态 c,如果修改后的状态为0,表示读写锁全部释放,返回 true,否则是 false。

// ReadLockpublic void unlock() { sync.releaseShared(1);}// AQSpublic final boolean releaseShared(int arg) { if (tryReleaseShared(arg)) { doReleaseShared(); return true; } return false;}// Syncprotected final boolean tryReleaseShared(int unused) { Thread current = Thread.currentThread(); // 先检查 firstReader是否是当前线程 if (firstReader == current) { // assert firstReaderHoldCount > 0; if (firstReaderHoldCount == 1) firstReader = null; else firstReaderHoldCount--; //否则,处理 cached/readHolds中的HoldCounter } else { HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) rh = readHolds.get(); int count = rh.count; if (count <= 1) { readHolds.remove(); if (count <= 0) throw unmatchedUnlockException(); } --rh.count; } //自旋修改 state for (;;) { int c = getState(); int nextc = c - SHARED_UNIT; if (compareAndSetState(c, nextc)) // Releasing the read lock has no effect on readers, // but it may allow waiting writers to proceed if // both read and write locks are now free. //只有读写锁均释放干净,才返回true return nextc == 0; }}

三、写锁

3.1 写锁的获取

下面讲解 tryAcquire 和 tryWriteLock,tryWriteLock 是一种非公平的获取。

3.1.1 tryAcquire

根据注释,tryAcquire 分为三步

1.如果读记数非0,或者写记数非0且写线程不是当前线程,失败

2.写锁的获取应该被堵塞或者CAS失败,失败

3.其他情况,写重入和新来的写线程,均成功

//WriteLockpublic void lock() { sync.acquire(1);}//AQSpublic final void acquire(int arg) { if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt();}//Syncprotected final boolean tryAcquire(int acquires) { /* * Walkthrough: * 1. If read count nonzero or write count nonzero * and owner is a different thread, fail. * 2. If count would saturate, fail. (This can only * happen if count is already nonzero.) * 3. Otherwise, this thread is eligible for lock if * it is either a reentrant acquire or * queue policy allows it. If so, update state * and set owner. */ Thread current = Thread.currentThread(); int c = getState(); int w = exclusiveCount(c); //c分为两部分,写和读 if (c != 0) { // (Note: if c != 0 and w == 0 then shared count != 0) // c非0,w是0,则读记数非0 || 独占的写线程不是当前线程 // 返回 false if (w == 0 || current != getExclusiveOwnerThread()) return false; if (w + exclusiveCount(acquires) > MAX_COUNT) throw new Error("Maximum lock count exceeded"); // Reentrant acquire // 重入的情况 setState(c + acquires); return true; } // 写应该被堵塞或者CAS失败,返回false if (writerShouldBlock() || !compareAndSetState(c, c + acquires)) return false; // 非重入,在CAS成功后,设定独占写线程为当前线程,返回true setExclusiveOwnerThread(current); return true;}

3.1.2 writerShouldBlock

在公平锁中,检查队列前面是否有其他线程在排队,在非公平锁中,总是返回false,即总是不堵塞。

//FairSyncfinal boolean writerShouldBlock() { return hasQueuedPredecessors();}//NonfairSyncfinal boolean writerShouldBlock() { return false; // writers can always barge}

3.1.3 tryWriteLock

和 tryAcquire 在非公平锁的写法基本一样。

final boolean tryWriteLock() { Thread current = Thread.currentThread(); int c = getState(); if (c != 0) { int w = exclusiveCount(c); if (w == 0 || current != getExclusiveOwnerThread()) return false; if (w == MAX_COUNT) throw new Error("Maximum lock count exceeded"); } if (!compareAndSetState(c, c + 1)) return false; setExclusiveOwnerThread(current); return true;}

3.2 写锁的释放

在 tryRelease 中,修改相应的状态,如果修改后写锁记数为0,则返回 true。

//WriteLockpublic void unlock() { sync.release(1);}//AQSpublic final boolean release(int arg) { if (tryRelease(arg)) { Node h = head; if (h != null && h.waitStatus != 0) unparkSuccessor(h); return true; } return false;}//Syncprotected final boolean tryRelease(int releases) { // 首先检查当前线程是否持有写锁 if (!isHeldExclusively()) throw new IllegalMonitorStateException(); int nextc = getState() - releases; // 根据修改后的写记数来确定free boolean free = exclusiveCount(nextc) == 0; // 此时,写锁完全释放,设定写独占线程为null if (free) setExclusiveOwnerThread(null); setState(nextc); // 返回 free return free;}

四、锁降级

如果一个线程已经持有写锁,再去获取读锁并释放写http://锁,这个过程称为锁降级。

持有写锁的时候去获取读锁,只有该持有写锁的线程能够成功获取读锁,然后再释放写锁,保证此时当前线程是有读锁的;如果有写锁,先释放写锁,再获取读锁,可能暂时不能获取读锁,会在队列中排队等待。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:实时天气免费api(免费下载实时天气预报)
下一篇:Spring WebFlux的使用指南
相关文章

 发表评论

暂时没有评论,来抢沙发吧~