非多路复用与多路复用总线转换桥的设计与实现

网友投稿 254 2022-11-27

非多路复用与多路复用总线转换桥的设计与实现

1 多路复用总线的信号和时序

1.1 SJA1000接口的主要信号说明

CAN控制器SJA1000提供的微处理器接口方式为典型INTEL或MOTOROLA地址数据多路复用总线模式,主要信号有地址数据信号AD7~AD0、地址选通信号ALE、片选信号CS、读信号RD、写信号WR、模式选择信号MODE。当MODE=1时,为INTEL模式;当MODE=0时,为MOTOROLA模式。本文描述的地址数据多路复用总线模式均为INTEL模式。图1和图2分别为INTEL模式读、写周期时序。AD7~AD0引脚在ALE有效时,传送的是地址信号;在RD或WR有效时,传输的是数据信号。图1和图2    1.2 SJA1000的时序分析

以SJA1000的读时序为例进行说明。在设计转换桥时,多路复用总线的各信号必须满足如下时间参数要求:ALE的脉冲宽度(tW?AL?)最小为8ns;地址信号(A0~A7)建立到ALE变为低电平所需时间(tsu?A-AL?)最小为8ns;RD的有效脉宽(tW?R?)最小为40ns;RD为低电平到数据信号?D7~D0?有效所需时间?tRLOV?最大为50ns;RD变为高电平到地址数据线释放(即高阻状态)所需时间?tRHDZ?最大为30ns。

2 非多路复用总线的信号和时序

2.1 TSM320F206接口的主要信号说明

2.2 TSM320F206的I/O时序分析

TMS320F206的读写时序如图3和图4所示。I/O的读或写工作周期一般在两个机器周期内完成。在此期间,IS信号和地址信号一直保持有效;闸门信号STRB发生在第一个机器周期有效后并保持一个机器周期以上;RE和WE有效时,数据有效。两次连续的写操作(如图4所示)时,WE的有效间隔时间tW(WH)最小为(2H-4)ns,而两次连续的读操作(如图3所示)时,RE的有效间隔时间tW(RDH)为(H-4)ns~Hns,其中H为0.5倍的机器时钟周期。可见对于连续的读、写操作,RE、WE的有效间隔不同,设计电路时应注意此细节。在连续的读或写操作时,IS信号一直为有效电平‘0',无法以此信号作为产生SJA1000的ALE、读、写信号起始基准;而在写周期时,STRB与WE的变化始终保持一致,因此在产生SJA1000写周期时,可以用STRB作为ALE、WR产生的起始基准信号。但是TSM320F206在连续的读操作时,STRB一直保持为低电平,可见在产生SJA1000读、写操作周期时,无法单独以它作为ALE、RD信号产生的起始基准,需与IS、WE、RE进行逻辑组合来作为SJA1000读、写操作周期的起始基准信号。

3 CPLD实现转换桥的设计方法

3.1 转换桥引脚信号定义

图5为转换桥的时序仿真图,其中转换桥的各引脚信号与TMS320F206和SJA1000l引脚信号的对应为:fabl7接A0~A7;fdb7接D0~D7;fds接IS;fstrb接STRB;fwe接WE;frd接RE;fcp接CLKOUT1;ale接ALE;adb7接AD7~AD0;wr接WR;rd接RD。

3.2 SJA1000读、写周期使能信号和起始基准信号的确定

转换桥的基准时钟fcp为TMS320F206的机器时钟输出信号CLKOUT1。fcp为20MHz的方波信号。因为TMS320F206的读或写工作周期一般为一、两个机器时钟周期,此时基准时钟fcp最多含有四个边沿状态,无法完成非多路复用到多路复用的转换,所以通过软件等待设置,使TMS320F206对外部总线操作时,由原来所用的一个机器时钟周期延长到四个机器时钟周期,边沿状态个数增加了4倍。另外fcp的脉宽为25ns,这样可以保证转换桥输出的多路复用总线时序的时间参数满足SJA1000的时序要求。从上面的时序分析中可以确定出SJA1000的读、写周期的使能信号?IS?和起始基准信号?STRB、WE、RE逻辑组合?。IS作为转换桥的片选信号,当IS为“0”时,转换桥工作;否则,转换桥的各输出信号被悬挂。当IS为“0”、STRB为“0”、WE为“0”、RE为“1”时,DSP开始对外部I/O进行写操作,在后面紧跟的四个DSP机器时钟周期产生出1个SJA1000的写周期;当IS为“0”、STRB为“0”、WE为“1”、RE为“1”时,DSP开始对外部I/O进行读操作,在后面紧跟的四个DSP机器时钟周期产生出1个SJA1000的读周期。

3.3 读操作转换过程

通过软件等待设置,使DSP的 I/O读、写操作需四个机器时钟周期。在第一个时钟周期的上升沿产生ale信号(脉宽为0.5倍的机器时钟周期),同时将DSP输入的低八位地址fabl7锁存并送到地址数据复用总线adb7,并保持到第二个时钟周期的上升沿为止,此时adb7为高阻状态。第三、第四个时钟周期,DSP的读信号frd有效,将此信号直接送到rd引脚,此时adb7引脚的数据直接送给fdb7引脚,读操作结束。图5 转换桥的时序仿真图    3.4 写操作转换过程

在写操作的四个时钟周期中,在第一个时钟周期的上升沿产生ale信号(脉宽为一个机器时钟周期),同时将DSP输入的低八位地址fabl7引脚的信号送到adb7上,并保持到第三个时钟周期结束。在第四个时钟周期的上升沿产生写信号wr(宽度为一个时钟周期),在DSP写信号few的上升沿处锁存数据线fdb7来的信号,并将其送到adb7引脚上,延时到第五个时钟周期时把adb7变为高阻状态,写操作结束。

本文提出的非多路复用总线到多路复用总线转换桥采用了Xilinx公司的CPLD芯片XC95144-15-PQ100,并使用该公司开发的集成环境Fundation F3.1i,将其集成为一块专用芯片。通过大量的实验测试,此转换桥工作非常稳定,现已应用到电力网络馈线远程终端装置(FTU)中。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:零基础如何学好大数据?必备需要学习知识
下一篇:零基础学习大数据Hadoop需要什么准备?Hadoop如何发展起来的?
相关文章

 发表评论

暂时没有评论,来抢沙发吧~