好程序员大数据学习路线分享Hadoop阶段的高可用配置

网友投稿 244 2022-11-26

好程序员大数据学习路线分享Hadoop阶段的高可用配置

大数据学习路线分享Hadoop阶段的高可用配置,什么是Hadoop的HA机制

Ha机制即Hadoop的高可用(7*24小时不中断服务)

正式引入HA机制是从hadoop2.0开始,之前的版本中没有HA机制

hadoop-ha严格来说应该分成各个组件的HA机制——HDFS的HA、YARN的HA

HDFS的HA机制详解HDFS 的HA主要是通过双namenode协调工作实现

双namenode协调工作的要点:A、元数据管理方式需要改变:

内存中各自保存一份元数据 Edits日志只能有一份,只有Active状态的namenode节点可以做写操作 两个namenode都可以读取edits 共享的edits放在一个共享存储中管理(qjournal和NFS两个主流实现) B、需要一个状态管理功能模块 实现了一个zkfailover,常驻在每一个namenode所在的节点 每一个zkfailover负责监控自己所在namenode节点,利用zk进行状态标识 当需要进行状态切换时,由zkfailover来负责切换 切换时需要防止brain split脑裂现象的发生

Namenode的运行原理两台服务器上都存在一个namenode ,其中一台Namenode 处于active状态,一台处于standby状态,两台服务器数据共享,两台服务器各自存有一份元数据,但是edit数据只有一份,两台服务器只有处于active状态的namenode服务器可以对edit进行写操作,另一台服务器只能对edit进行读操作,而共享的edit放到一个共享存储中进行管理。共享存储由文件管理系统qjournal和NFS来实现。

而两台服务器的active standby状态如何管理,则需要一个管理模块:ZKFC (zookeeper failover controller) 来管理。每一个zkfc负责监控自己所在namenode节点,利用zk进行状态标识。当需要进行状态切换时,由zkfailover来负责切换

切换时需要防止brain split脑裂现象的发生。什么是脑裂现象

脑裂现象就是两台namenode都处于active状态,产生冲突,这就是脑裂。Hadoop的高可用配置要注意解决脑裂状态。

脑裂状态如何产生

当一台active状态的namenode服务器处于假死状态,那么另一台namenode服务器的zkfc收到信息,把属于他的namenode状态改变为active状态,第一台处于假死状态的namdenode又醒过来,就会产生脑裂。

脑裂如何解决第二台namenode的zkfc此时就会一不做二不休,把第一台处于假死状态的namenode杀掉 运用ssh kill -9 namenode ,直接杀掉第一台服务器的namenode进行补刀,如果补刀不成功的话,zkfc进入第一台服务器,直接调用用户的自定义脚本程序 /home/Hadoop/kill/poweroff.sh 杀-掉假-死的namenode。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Hadoop 安装(
下一篇:单片模糊控制器NLX230的设计特点与应用分析
相关文章

 发表评论

暂时没有评论,来抢沙发吧~