c语言sscanf函数的用法是什么
378
2022-11-25
大数据PAZR集成ldap实操!what?
1.说明
p:presto a:allixop z:zeppelin r:rancher分为三部分讲解1.什么是presto+Alluxio,大数据presto+Alluxio集成详细部署说明2.大数据zeppelin+rancher,docker的集成部署3.presto+alluxio集成ldap实操测试,zeppelin+rancher集成ldap实操测试
1.1什么是presto
于内存的并行计算,Facebook推出的分布式SQL交互式查询引擎 多个节点管道式执行支持任意数据源 数据规模GB~PB 是一种Massively parallel processing(mpp)(大规模并行处理)模型数据规模PB 不是把PB数据放到内存,只是在计算中拿出一部分放在内存、计算、抛出、再拿
1.2 presto架构
2.1什么是alluxio
Alluxio(前身Tachyon)是世界上第一个以内存为中心的虚拟的分布式存储系统。它统一了数据访问的方式,为上层计算框架和底层存储系统构建了桥梁。
2.2Alluxio架构
3.presto+Alluxio
Starbrust + Alluxio = 在一起更好和Alluxio一起的Starbrust Presto是一个真正独立的数据栈,支持任何文件或对象存储进行交互式大数据分析。Starbrust Presto和Alluxio整合后能够共同帮助作业运行速度提高10倍,使重要数据本地化,并连接到各种存储系统和云。
3.1 presto部署
3.1.3测试环境:1.CM6.32.Presto版本0.2263.操作系统版本为Redhat7.34.采用root用户进行操作
3.1.4下载下载最新版本Presto服务的安装目录为/opt/cloudera/parcels/presto-p /opt/cloudera/parcels/presto scp -r -P53742 presto-server-0.226.* root@incubator-t3-dc-002:/opt/cloudera/parcels/presto/ presto-server-0.226.jar
3.1.6解压安装(presto集群所有机器) 将presto-server-0.205.tar.gz压缩包解压至/opt/cloudera/parcels目录 # tar -zxvf presto-server-0.226.tar.gz -C /opt/cloudera/parcels/ #cd /opt/cloudera/parcels/ mv presto presto-soft mv presto-server-0.226/ presto
3.1.7Java环境变量设置 vim /opt/cloudera/parcels/presto/bin/launcher文件如下位置添加JAVA环境变量 JAVA_HOME=/usr/java/jdk1.8.0_181-cloudera PATH=$JAVA_HOME/bin:$PATH
3.1.8准备Presto的配置文件 #mkdir -p /opt/cloudera/parcels/presto/etc #presto配置文件 #mkdir -p /data/presto #数据盘 vim /opt/cloudera/parcels/presto/etc/node.properties node.environment=presto node.id=presto-cdh01 node.data-dir=/data/presto 配置说明: node.environment:集群名称。所有在同一个集群中的Presto节点必须拥有相同的集群名称。 node.id:每个Presto节点的唯一标示。每个节点的node.id都必须是唯一的。在Presto进行重启或者升级过程中每个节点的node.id必须保持不变。如果在一个节点上安装多个Presto实例(例如:在同一台机器上安装多个Presto节点),那么每个Presto节点必须拥有唯一的node.id。 node.data-dir:数据存储目录的位置(操作系统上的路径)。Presto将会把日期和数据存储在这个目录下。
3.1.9Presto的jvm配置文件 配置Presto的JVM参数,创建jvm.config文件 vim /opt/cloudera/parcels/presto/etc/jvm.config -server -Xmx8G -XX:+UseConcMarkSweepGC -XX:+ExplicitGCInvokesConcurrent -XX:+CMSClassUnloadingEnabled -XX:+AggressiveOpts -XX:+HeapDumpOnOutOfMemoryError -XX:OnOutOfMemoryError=kill -9 %p -XX:ReservedCodeCacheSize=150M #配置文件的格式是:一系列的选项,每行配置一个单独的选项。由于这些选项不在shell命令中使用。因此即使将每个选项通过空格或者其他的分隔符分开,java程序也不会将这些选项分开,而是作为一个命令行选项处理。(就想下面例子中的OnOutOfMemoryError选项)。 由于OutOfMemoryError将会导致JVM处于不一致状态,所以遇到这种错误的时候我们一般的处理措施就是将dump headp中的信息(用于debugging),然后强制终止进程。 Presto会将查询编译成字节码文件,因此Presto会生成很多class,因此我们我们应该增大Perm区的大小(在Perm中主要存储class)并且要允许Jvm class unloading。
3.1.10创建config.properties文件 该配置文件包含了Presto Server的所有配置信息。每个Presto Server既是Coordinator也是一个Worker。在大型集群中,处于性能考虑,建议单独用一台服务器作为Coordinator。 coordinator节点的配置如下: Presto会将查询编译成字节码文件,因此Presto会生成很多class,因此我们我们应该增大Perm区的大小(在Perm中主要存储class)并且要允许Jvm class unloading。 vim /opt/cloudera/parcels/presto/etc/coordinator-config.properties coordinator=true node-scheduler.include-coordinator=false http-server.http.port=6660 query.max-memory=4GB query.max-memory-per-node=1GB discovery-server.enabled=true discovery.uri=http://incubator-t3-dc-001:6660 worker节点的配置如下: vim /opt/cloudera/parcels/presto/etc/worker-config.properties coordinator=false http-server.http.port=6660 query.max-memory=4GB query.max-memory-per-node=1GB discovery.uri=http://incubator-t3-dc-001:6660
3.1.11新建日志文件log.properties vim /opt/cloudera/parcels/presto/etc/log.properties com.facebook.presto=INFO
3.1.12重命名config文件 主节点 /opt/cloudera/parcels/presto/etc/ mv coordinator-config.properties config.properties work节点 cd /opt/cloudera/parcels/presto/etc/ mv worker-config.properties config.properties
3.1.14Presto-webpresto集成hive
1.在Presto集群的所有节点创建目录mkdir -p /opt/cloudera/parcels/presto/etc/catalog2.创建hive.properties,该文件与Hive服务集成使用
vim /opt/cloudera/parcels/presto/etc/catalog/hive.properties connector.name=hive-hadoop2 hive.metastore.uri=thrift://incubator-t3-dc-003:9083
vim /opt/cloudera/parcels/presto/etc/jvm.config 添加-DHADOOP_USER_NAME=presto
3.3 Presto集成hive测试
这里测试Presto与Hive的集成使用Presto提供的Presto CLI,该CLI是一个可执行的JAR文件,也意味着你可以想UNIX终端窗口一样来使用CLI。 1.下载Presto的presto-cli-0.226-executable.jar,并重命名为presto并赋予可以执行权限 https://repo1.maven.org/maven2/com/facebook/presto/presto-cli/0.226/presto-cli-0.226-executable.jar 2.复制客户端到所有主机上 scp -r -P53742 /home/t3cx/presto-cli-0.226-executable.jar root@incubator-t3-dc-005:/opt/cloudera/parcels/presto/etc/ 3.复制客户端到所有主机上 cd /opt/cloudera/parcels/presto/etc/ mv presto-cli-0.226-executable.jar presto chmod +x presto
3.集群启用了Sentry,这里我们使用presto用户访问Hive所以为presto用户授权default库的所有权限 4.Hive创建角色并授权 #beeline #!connect jdbc:hive2://incubator-t3-dc-001:10000/;user=hive;password=**** create role presto; grant role presto to group presto; grant ALL on database default to role presto; 5.impala创建角色并授权 su hive #impala-shell -i incubator-t3-dc-002 create role presto; grant role presto to group presto; grant ALL on database default to role presto; 执行查询语句 [root@incubator-t3-dc-001 etc]# ./presto --server localhost:6660 --catalog hive --schema=default
3.4 Presto集成kudu测试
添加kudu配置分发到所有节点上面 # vim /opt/cloudera/parcels/presto/etc/catalog/kudu.properties connector.name=kudu kudu.client.master-addresses=incubator-t3-dc-001:7051,incubator-t3-dc-002:7051,incubator-t3-dc-003:7051 #重启服务 /opt/cloudera/parcels/presto/bin/launcher restart #验证kudu select * from kudu.default."default.test_kudu_table"
3.5 Presto集成ldap
#apacheds安装ldaps
groupadd apacheds #添加用户组 useradd -s /bin/sh -g apacheds apacheds 添加用户 wget http://mirrors.ocf.berkeley.edu/apache//directory/apacheds/dist/2.0.0.AM25/apacheds-2.0.0.AM25-64bit.bin #下载授权 chmod +x apacheds-2.0.0.AM25-64bit.bin ./apacheds-2.0.0.AM25-64bit.bin #启动 /etc/init.d/apacheds-2.0.0.AM25-default start [root@incubator-t3-dc-002 presto_hue]# netstat -anplt |grep 10389 tcp 0 0 0.0.0.0:10389 0.0.0.0:* LISTEN 24770/java
[root@incubator-t3-dc-002 presto_hue]# /etc/init.d/apacheds-2.0.0.AM25-default restart Stopping ApacheDS - default... Stopped ApacheDS - default. Starting ApacheDS - default... [root@incubator-t3-dc-002 presto_hue]#
#启用ldaps cd /var/lib/apacheds-2.0.0.AM25/default/conf/ 密码:t3CDH123! /opt/jdk1.8.0_181/bin/keytool -genkeypair -alias apacheds -keyalg RSA -validity 7 -keystore ads.keystore chown apacheds:apacheds ./ads.keystore #配置apacheds.cer /opt/jdk1.8.0_181/bin/keytool -export -alias apacheds -keystore ads.keystore -rfc -file apacheds.cer #默认口令 changeit ## 将证书导入系统证书库,实现自认证,这里的密钥库口令是默认的: /opt/jdk1.8.0_181/bin/keytool -import -file apacheds.cer -alias apacheds -keystore /usr/java/jdk1.8.0_181-cloudera/jre/lib/security/cacerts #配置证书 /var/lib/apacheds-2.0.0.AM25/default/conf/ads.keystore /etc/init.d/apacheds-2.0.0.AM25-default restart 配置客户端
#测试presto-ldaps cd /data/presto-server-0.228/etc /opt/jdk1.8.0_181/bin/keytool -genkeypair -alias presto -keyalg RSA -keystore presto.jks 修改config.properties,添加 http-server.authentication.type=PASSWORD http-server.https.enabled=true http-server.https.port=8443 http-server.https.keystore.path=/data/presto-server-0.228/etc/presto.jks http-server.https.keystore.key=t3CDH123! # vi password-authenticator.properties password-authenticator.name=ldap ldap.url=ldaps://172.16.16.246:10636 ldap.user-bind-pattern=uid=${USER},ou=people,dc=t3,dc=hadoop ldap.user-base-dn=dc=t3,dc=hadoop
3.6 Alluxio 内存存储系统部署安装
下载并解压 wget https://downloads.alluxio.io/downloads/files/2.0.1/alluxio-2.0.1-bin.tar.gz cp conf/alluxio-site.properties.template conf/alluxio-site.properties
拷贝软件到所有节点
scp -r -P53742 /opt/cloudera/parcels/alluxio/ root@incubator-t3-dc-002:/opt/cloudera/parcels/ cd /opt/cloudera/parcels/alluxio/alluxio-2.0.1 cp conf/alluxio-site.properties.template conf/alluxio-site.properties
修改配置(集群所有机器)
vim alluxio-site.properties alluxio.master.hostname=172.16.16.241 vim alluxio-site.properties 更新conf/alluxio-site.properties中的alluxio.master.hostname为你将运行Alluxio Master的机器的主机名。添加所有worker节点的IP地址到conf/workers文件 alluxio.home=/opt/cloudera/parcels/alluxio/alluxio-2.0.1 alluxio.work.dir=/opt/cloudera/parcels/alluxio/alluxio-2.0.1 alluxio.conf.dir=${alluxio.home}/conf alluxio.logs.dir=${alluxio.home}/logs alluxio.master.mount.table.root.ufs=hdfs://incubator-t3-dc-001:8020/alluxio #hdfs挂载地址 alluxio.metrics.conf.file=${alluxio.conf.dir}/metrics.properties alluxio.master.hostname=incubator-t3-dc-001 alluxio.underfs.address=hdfs://incubator-t3-dc-001:8020/alluxio alluxio.underfs.hdfs.configuration=/etc/hadoop/conf/core-site.xml alluxio.master.bind.host=172.16.16.241 alluxio.master.journal.folder=/opt/cloudera/parcels/alluxio/alluxio-2.0.1/journal alluxio.master.web.bind.host=172.16.16.241 alluxio.master.web.hostname=incubator-t3-dc-001 alluxio.master.web.port=6661 alluxio.worker.bind.host=0.0.0.0 alluxio.worker.memory.size=2048MB alluxio.worker.tieredstore.levels=1 alluxio.worker.tieredstore.level0.alias=MEM alluxio.worker.tieredstore.level0.dirs.path=/mnt/ramdisk JAVA_HOME=/usr/java/jdk1.8.0_181-cloudera alluxio.user.network.netty.timeout.ms=600000 alluxio.master.security.impersonation.presto.users=* #scp所有机器 scp -r -P53742 alluxio-site.properties root@incubator-t3-dc-002:/opt/cloudera/parcels/alluxio/alluxio-2.0.1/conf/ scp -r -P53742 alluxio-masters.sh alluxio-workers.sh alluxio-start.sh root@incubator-t3-dc-002:/opt/cloudera/parcels/alluxio/alluxio-2.0.1/bin
vim workers 172.16.16.246 172.16.16.250 172.16.16.242 172.16.16.249
cp -rf alluxio-env.sh.template alluxio-env.sh vim alluxio-env.sh(所有机器) #添加 export ALLUXIO_SSH_OPTS="-p 53742" export JAVA_HOME=/usr/java/jdk1.8.0_181-cloudera
cd /opt/cloudera/parcels/alluxio/alluxio-2.0.1/bin vim alluxio-masters.sh 添加-p 53742 cd /opt/cloudera/parcels/alluxio/alluxio-2.0.1/bin vim alluxio-workers.sh 搜索ssh 添加-p 53742
[root@incubator-t3-dc-001 bin]# ln -s /opt/jdk1.8.0_181/bin/java /usr/bin/java [root@incubator-t3-dc-001 bin]# /usr/bin/java -version java version "1.8.0_181" Java(TM) SE Runtime Environment (build 1.8.0_181-b13) Java HotSpot(TM) 64-Bit Server VM (build 25.181-b13, mixed mode) [root@incubator-t3-dc-001 bin]# ./alluxio format 报错需要在所有节点 创建mkdir -p /mnt/ramdisk/alluxioworker 如果不创建会报如下错误。
cd /opt/cloudera/parcels/alluxio/alluxio-2.0.1/bin [root@incubator-t3-dc-001 bin]# ./alluxio format Executing the following command on all worker nodes and logging to /opt/cloudera/parcels/alluxio/alluxio-2.0.1/logs/task.log: /opt/cloudera/parcels/alluxio/alluxio-2.0.1/bin/alluxio formatWorker Waiting for tasks to finish... All tasks finished Executing the following command on all master nodes and logging to /opt/cloudera/parcels/alluxio/alluxio-2.0.1/logs/task.log: /opt/cloudera/parcels/alluxio/alluxio-2.0.1/bin/alluxio formatJournal Waiting for tasks to finish... All tasks finished
启动alluxio
./alluxio-start.sh all NoMountalluxio-start.sh ./alluxio-start.sh all SudoMount bin]# echo "1.txt">1.txt [root@incubator-t3-dc-001 bin]# ll total 68 -rw-r--r-- 1 root root 6 Oct 14 20:27 1.txt -rwxrwxrwx 1 501 games 11808 Oct 12 14:35 alluxio -rwxrwxrwx 1 501 games 2758 Oct 12 14:38 alluxio-masters.sh -rwxrwxrwx 1 501 games 9668 Oct 14 20:06 alluxio-monitor.sh -rwxrwxrwx 1 501 games 5591 Aug 23 12:52 alluxio-mount.sh -rwxrwxrwx 1 501 games 18761 Oct 14 20:06 alluxio-start.sh -rwxrwxrwx 1 501 games 3806 Aug 23 12:52 alluxio-stop.sh -rwxrwxrwx 1 501 games 2128 Oct 14 19:48 alluxio-workers.sh [root@incubator-t3-dc-001 bin]# chmod 777 1.txt [root@incubator-t3-dc-001 bin]# ./alluxio fs copyFromLocal 1.txt / Copied file:///opt/cloudera/parcels/alluxio/alluxio-2.0.1/bin/1.txt to / 上传文件到alluxio cd /opt/cloudera/parcels/alluxio/alluxio-2.0.1/bin #alluxio文件固化到HDFS ./alluxio fs persist /1.txt hadoop fs -ls /alluxio
3.7 Alluxio 集成presto
在hive-core-site.xml添加
在hive-core-site.xml添加
配置core-site.xml
你需要向你的hive.properties指向的core-site.xml中添加以下配置项:
hive-site.xml
修改jvm.properties修改alluxio-site.properties另外,你也可以将alluxio-site.properties的路径追加到Presto JVM配置中,该配置在Presto目录下的etc/jvm.config文件中。该方法的好处是只需在alluxio-site.properties配置文件中设置所有Alluxio属性。-Xbootclasspath/p:/opt/cloudera/parcels/alluxio/alluxio-2.0.1/#所有work节点必须添加此外,我们建议提高alluxio.user.network.netty.timeout.ms的值(比如10分钟),来防止读异地大文件时的超时问题。
Create a Hive table on Alluxio Create a Hive table on Alluxio Here is an example to create an internal table in Hive backed by files in Alluxio. You can download a data file (e.g., ml-100k.zip) from Unzip this file and upload the file u.user into /ml-100k/ on Alluxio: # ./bin/alluxio fs mkdir /ml-100k Successfully created directory /ml-100k # ./bin/alluxio fs copyFromLocal /opt/cloudera/parcels/alluxio/alluxio-2.0.1/ml-100k/u.user alluxio://incubator-t3-dc-001:19998/ml-100k Copied file:///opt/cloudera/parcels/alluxio/alluxio-2.0.1/ml-100k/u.user to alluxio://incubator-t3-dc-001:19998/ml-100k
Hive create table WARNING: Hive CLI is deprecated and migration to Beeline is recommended. hive> CREATE TABLE u_user ( > userid INT, > age INT, > gender CHAR(1), > occupation STRING, > zipcode STRING) > ROW FORMAT DELIMITED > FIELDS TERMINATED BY '|' > LOCATION 'alluxio://incubator-t3-dc-001:19998/ml-100k'; FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:java.lang.RuntimeException: java.lang.ClassNotFoundException: Class alluxio.hadoop.FileSystem not found)
集成hive
#第一步环境变量 export HIVE_AUX_JARS_PATH=/opt/cloudera/parcels/alluxio/alluxio-2.0.1/client/alluxio-2.0.1-client.jar:${HIVE_AUX_JARS_PATH} #拷贝java路径 cp -rf /opt/cloudera/parcels/alluxio/alluxio-2.0.1/client/alluxio-2.0.1-client.jar /opt/cloudera/parcels/CDH/lib/hive/lib #权限 chmod 777 /opt/cloudera/parcels/CDH/lib/hive/lib/alluxio-2.0.1-client.jar 重启hive服务
集成hdfs # cp -rf /opt/cloudera/parcels/alluxio/alluxio-2.0.1/client/alluxio-2.0.1-client.jar /opt/cloudera/parcels/CDH/lib/hadoop-hdfs/lib/ [root@incubator-t3-dc-001 lib]# chmod 777 /opt/cloudera/parcels/CDH/lib/hadoop-hdfs/lib/alluxio-2.0.1-client.jar 重启hdfs服务
测试hive集成
#切换hive用户 cubator-t3-dc-001:19998, Error: alluxio.exception.status.UnauthenticatedException: Plain authentication failed: Failed to authenticate client user="hive" connecting to Alluxio server and impersonating as impersonationUser="root" to access Alluxio file system. User "hive" is not configured to allow any impersonation. Please read the guide to configure impersonation at https://docs.alluxio.io/os/user/2.0/en/advanced/Security.html) su hive 重新创建表 hive> CREATE TABLE u_user ( > userid INT, > age INT, > gender CHAR(1), > occupation STRING, > zipcode STRING) > ROW FORMAT DELIMITED > FIELDS TERMINATED BY '|' > LOCATION 'alluxio://incubator-t3-dc-001:19998/ml-100k';
#创建表 create EXTERNAL table rating_alluxio( userId INT,movieId INT, rating FLOAT, timestamps STRING) row format delimited fields terminated by ',' LOCATION 'alluxio://incubator-t3-dc-001:19998/ml-100k';
使用presto查询表
需要关联java包,否则会报错 使用 Presto 查询表,关联java包,重启服务 cp -rf /opt/cloudera/parcels/alluxio/alluxio-2.0.1/client/alluxio-2.0.1-client.jar /opt/cloudera/parcels/presto/lib/ chmod 777 /opt/cloudera/parcels/presto/lib/alluxio-2.0.1-client.jar #复制客户端到presto-hive里面 复制Alluxio client jar cp -rf /opt/cloudera/parcels/alluxio/alluxio-2.0.1/client/alluxio-2.0.1-client.jar /opt/cloudera/parcels/presto/plugin/hive-hadoop2/ 重启presto /opt/cloudera/parcels/presto/bin/launcher restart #查询表 ./presto --server localhost:6660 --execute "use default;select * from u_user limit 10;" --catalog hive --debug
text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=)Failed to authenticate client user="root" connecting to Alluxio server and impersonating as impersonationUser="presto" to access Alluxio file system.#master机器vim alluxio/alluxio-2.0.1/conf/alluxio-site.propertiesalluxio.master.security.impersonation.root.users=*#添加用户到site里面然后重启alluxio服务完全禁用客户端模拟机制。这就需要将客户端配置参数(不在服务器上)作如下设置:alluxio.security.login.impersonation.username=NONE正确显示
4.1Zeppelin
Apache Zeppelin 是一个让交互式数据分析变得可行的基于网页的开源框架。Zeppelin提供了数据分析、数据可视化等功能。Zeppelin 是一个提供交互数据分析且基于Web的笔记本。方便你做出可数据驱动的、可交互且可协作的精美文档,并且支持多种语言,包括 Scala(使用 Apache Spark)、Python(Apache Spark)、SparkSQL、 Hive、 Markdown、Shell。
4.2 zeppelin部署
在机器上安装zeppelin
#zeppelin安装 cd /opt/cloudera/parcels/zeppelin tar zxvf zeppelin-0.8.2-bin-all.tgz
#修改端口
vim /opt/cloudera/parcels/zeppelin/zeppelin-0.8.2-bin-all/conf/zeppelin-env.sh
export ZEPPELIN_PORT=80
export ZEPPELIN_ADDR=172.16.16.241
禁止匿名登陆
[root@incubator-t3-dc-001 conf]# cp -rf shiro.ini.template shiro.ini
[root@incubator-t3-dc-001 conf]# cp -rf zeppelin-site.xml.template zeppelin-site.xml
vim zeppelin-site.xml
#禁止匿名登录
修改zeppelin.anonymous.allowed属性为false
集成ldap
#配置ldap vim shiro.ini [main] ldapRealm=org.apache.zeppelin.realm.LdapRealm ldapRealm.contextFactory.authenticationMechanism=simple ldapRealm.contextFactory.url=ldap://172.16.16.245:389 ldapRealm.userDnTemplate=uid={0},ou=People,dc=t3,dc=com ldapRealm.pagingSize = 200 ldapRealm.authorizationEnabled=true ldapRealm.searchBase= dc=t3,dc=com ldapRealm.userSearchBase = ou=People,dc=t3,dc=comd ldapRealm.groupSearchBase = ou=group,dc=t3,dc=com ldapRealm.groupObjectClass= posixGroup ldapRealm.userLowerCase = true ldapRealm.userSearchScope = subtree; ldapRealm.groupSearchScope = subtree; ldapRealm.contextFactory.systemUsername= cn=Manager,dc=t3,dc=com ldapRealm.contextFactory.systemPassword= CFXZ6EU3bCpIMFpFZX0LqjEq ldapRealm.groupSearchEnableMatchingRuleInChain = true ldapRealm.rolesByGroup = group: admin #关联组合admin角色 sessionManager = org.apache.shiro.web.session.mgt.DefaultWebSessionManager cookie = org.apache.shiro.web.servlet.SimpleCookie cookie.name = JSESSIONID cookie.= true sessionManager.sessionIdCookie = $cookie securityManager.sessionManager = $sessionManager securityManager.sessionManager.globalSessionTimeout = 86400000 shiro.loginUrl = /api/login [roles] role1 = * role2 = * role3 = * admin = * [urls] /api/version = anon /api/interpreter/setting/restart/** = authc /api/interpreter/** = authc, roles[admin] /api/configurations/** = authc, roles[admin] /api/credential/** = authc, roles[admin] #/** = anon /** = authc
Ldap和用户认证只能二选一#权限认证其中的[users]部分,即登录时的账号。等号前是用户名,等号后是密码,逗号后是用户的角色。账号可以不定义角色,也可以定义多个角色。比如用户名user1,对应密码password2,拥有角色role1和role2。
[users] admin = t, admin bi_wkx = bi_wkx, read, write bi_ch = bi_ch, read, write bi_fyc = bi_fyc read, write
[roles]配置用户的角色,[urls]部分配置不同web接口的认证方式和需要的角色,/表示任意路径,验证时按照定义顺序匹配,所以/一般放在最后一行。比如,下面的配置定义了4种角色。接口version验证方式anon,即不需要验证,不用登录就能访问。接口interperter需要表格形式的验证,且用户具有admin角色才能访问。/** = authc表示其他接口只需要登录验证即可访问,不需要用户有额外的角色。
[roles] admin = * read = * write = * [urls] # anon means the access is anonymous. # authcBasic means Basic Auth Security # authc means Form based Auth Security /api/version = anon /api/interpreter/** = authc, roles[admin] /api/credentail/** = authc, roles[admin] /api/configurations/** = authc, roles[admin] /** = authc 重启服务 sh ../bin/zeppelin-daemon.sh restart
集成zeppelin各插件
#zeppelin配置hive 配置文件vim zeppelin-env.sh:在文件末尾添加以下配置,根据自己的路径设置。 export JAVA_HOME=/usr/java/jdk1.8.0_181-cloudera export MASTER=yarn-client export HADOOP_HOME=/opt/cloudera/parcels/CDH/lib/hadoop export SPARK_HOME=/opt/cloudera/parcels/CDH/lib/spark export HIVE_HOME=/opt/cloudera/parcels/CDH/lib/hive export IMPALA_HOME=/opt/cloudera/parcels/CDH/lib/impala export HADOOP_CONF_DIR=/etc/hadoop/conf export ZEPPELIN_LOG_DIR=/opt/cloudera/parcels/zeppelin/zeppelin-0.8.2-bin-all/log export ZEPPELIN_PID_DIR=/opt/cloudera/parcels/zeppelin/zeppelin-0.8.2-bin-all/run/ export ZEPPELIN_WAR_TEMPDIR=/var/tmp/zeppelin #配置zeppelin 页面 common.max_count 1000 hive.driver org.apache.hive.jdbc.HiveDriver hive.password hive hive.url jdbc:hive2://incubator-t3-dc-003:10000 hive.user hive zeppelin.interpreter.localRepo /opt/cloudera/parcels/zeppelin/zeppelin-0.8.2-bin-all/local-repo/helium-registry-cache zeppelin.interpreter.output.limit 102400 zeppelin.jdbc.auth.type zeppelin.jdbc.concurrent.max_connection 10 zeppelin.jdbc.concurrent.use true zeppelin.jdbc.keytab.location zeppelin.jdbc.principal Dependencies artifact exclude org.apache.hive:hive-jdbc:2.1.1 hive-jdbc-2.1.1-cdh6.3.0.jar org.apache.hadoop:hadoop-common:3.0.0 hadoop-common-3.0.0-cdh6.3.0.jar mysql:mysql-connector-java:5.1.47 mysql-connector-java-5.1.47.jar
新建;jdbc_impala default.driver = org.apache.hive.jdbc.HiveDriver default.url = jdbc:hive2://incubator-t3-dc-003:21050/default;auth=noSasl(验证模式是NOSASL才能正常使用impala,但是这个会让impala查询数据时,跳过rander中设置的掩码规则) default.user = zeppelin url 的 NOSASL模式需要任意一个用户名(如Hive),不需要密码,不填写用户名会报错。 Dependencies artifact exclude org.apache.hive:hive-jdbc:2.1.1 hive-jdbc-2.1.1-cdh6.3.0.jar org.apache.hadoop:hadoop-common:3.0.0 hadoop-common-3.0.0-cdh6.3.0.jar mysql:mysql-connector-java:5.1.47 mysql-connector-java-5.1.47.jar #impala测试 %impala select * from nation limit 10
#spark
local[*] in local mode yarn-client in Yarn client mode yarn-cluster in Yarn cluster mode
#presto
presto %jdbc (default) %presto select * from kudu.default."default.test_kudu_table" limit 10 Option Shared Properties name value default.driver com.facebook.presto.jdbc.PrestoDriver default.url jdbc:presto://172.16.16.241:6660 default.user root default.passwd 密码 zeppelin.jdbc.concurrent.max_connection 10 zeppelin.jdbc.concurrent.use true Dependencies artifact exclude com.facebook.presto:presto-jdbc:0.170 cd /opt/cloudera/parcels/zeppelin/zeppelin-0.8.2-bin-all/interpreter/jdbc rz presto-jdbc-0.226.jar
5.1 rancher
Rancher是一个开源的企业级容器管理平台。通过Rancher,企业再也不必自己使用一系列的开源软件去从头搭建容器服务平台。Rancher提供了在生产环境中使用的管理Docker和Kubernetes的全栈化容器部署与管理平台。
为什么需要Rancher在原来, 如果我们需要做一个分布式集群我们需要学习一全套的框架并编码实现如 服务发现, 负载均衡等逻辑, 给开发者造成很大的负担, 不过好在现在有Docker以及他周边的一些技术能在上层解决这些问题, 而应用该怎么开发就怎么开发.
当你选择使用Docker技术栈的时候, 会发现在生产环境中不光光是 docker run就能解决的. 还需要考虑比如docker之间的组网, 缩扩容等问题, 于是你去学习kubernetes, 发现好像有点复杂啊, 有没有更傻瓜化一点的? 那就是rancher了.
5.2 rancher部署zeppelin
#安装docker sudo yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo sudo yum makecache fast yum list docker-ce --showduplicates | sort -r sudo yum install docker-ce-17.12.0.ce-1.el7.centos docker version docker pull rancher/server netstat -anplt | grep 8000 # Error starting daemon: error initializing graphdriver: devmapper: Base Device UUID and Filesystem veri(报错) systemctl stop docker (停止docker 服务) dmsetup udevcomplete_all (释放未完成的磁盘操作) sudo rm -rf /var/lib/docker/* (清空docker 数据) * reboot (注:当有镜像或容器文件删除不了时,重启服务器) systemctl start docker (重启docker服务) 以下是创建数据库和数据库用户的SQL命令例子 #创建rancher数据库 CREATE DATABASE IF NOT EXISTS cattle COLLATE = 'utf8_general_ci' CHARACTER SET = 'utf8'; GRANT ALL ON cattle.* TO 'cattle'@'%' IDENTIFIED BY 'cattle'; GRANT ALL ON cattle.* TO 'cattle'@'localhost' IDENTIFIED BY 'cattle'; 启动一个Rancher连接一个外部数据库,你需要在启动容器的命令中添加额外参数。 #启动rancher docker run -d --restart=unless-stopped -p 80:8080 rancher/server \ --db-host incubator-t3-dc-001 --db-port 3306 --db-user cattle --db-pass cattle --db-name cattle docker search nginx docker pull docker.io/nginx docker images #启动rancher docker run --name rancher -d -p 80:8080 rancher/server docker start 9b04ff050ddd 为了安全可以给Rancher配置登录账号(选择 系统管理 --》访问控制 --》LOCAL)-添加本地账号 管理员 admin admin #安装zeppelin docker pull apache/zeppelin:0.8.2 docker volume create zeppelin-logs docker volume create zeppelin-notebook 3.启动zeppelin docker run -d -p 80:8081 \ -v zeppelin-logs:/logs \ -v zeppelin-notebook:/notebook \ --env HOST_IP=0.0.0.0 \ --env ZEPPELIN_LOG_DIR='/logs' \ --env ZEPPELIN_NOTEBOOK_DIR='/notebook' \ --volume /etc/localtime:/etc/localtime \ --restart=always \ --name zeppelin apache/zeppelin:0.8.2
5.3 rancher集成ldap认证
组:ou=Group,dc=t3,dc=com 用户:ou=People,dc=t3,dc=com 域:172.16.16.245 端口:389 #设置 常规 服务器: 172.16.16.245:389 TLS: No 服务账号: cn=Manager,dc=t3,dc=com Connection Timeout: 1000毫秒 用户 搜索起点: ou=People,dc=t3,dc=com 对象分类: posixAccount 登录字段: uid 名称字段: givenName 搜索字段: uid 启用字段:
大数据运维更多技巧和技术
学习专栏你能收获什么?
专栏以CDH和ambari二个大数据平台为主,内容全都是笔者多年的工作中提炼出来的,不仅包含了大数据的基本知识,最主要的是大数据安全维领域的常见案例和实战技巧,借以本专栏分享给大家,希望大家通过学习,能够解决在日常工作中所遇到的问题,提高自己的工作效率,收获满满。
最后的最后,希望每一个学习我专栏的小伙伴,能够转型成功,升职加薪!
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~