将大数据学习门槛降到了地平线

网友投稿 264 2022-11-25

将大数据学习门槛降到了地平线

Hadoop介绍

Hadoop-大数据开源世界的亚当夏娃。 核心是HDFS数据存储系统,和MapReduce分布式计算框架。

HDFS

MapReduce

单机版Hadoop介绍

对于学习hadoop原理和hadoop开发的人来说,搭建一套hadoop系统是必须的。但

配置该系统是非常头疼的,很多人配置过程就放弃了。 没有服务器供你使用

这里介绍一种免配置的单机版hadoop安装使用方法,可以简单快速的跑一跑hadoop例子辅助学习、开发和测试。 要求笔记本上装了Linux虚拟机,虚拟机上装了docker。

安装

使用docker下载sequenceiq/hadoop-docker:2.7.0镜像并运行。

[root@bogon ~]# docker pull sequenceiq/hadoop-docker:2.7.0 2.7.0: Pulling from sequenceiq/hadoop-docker860d0823bcab: Pulling fs layer e592c61b2522: Pulling fs layer

下载成功输出

Digest: sha256:a40761746eca036fee6aafdf9fdbd6878ac3dd9a7cd83c0f3f5d8a0e6350c76a Status: Downloaded newer image for sequenceiq/hadoop-docker:2.7.0

启动

[root@bogon ~]# docker run -it sequenceiq/hadoop-docker:2.7.0 /etc/bootstrap.sh -bash --privileged=true Starting sshd: [ OK ] Starting namenodes on [b7a42f79339c] b7a42f79339c: starting namenode, logging to /usr/local/hadoop/logs/hadoop-root-namenode-b7a42f79339c.out localhost: starting datanode, logging to /usr/local/hadoop/logs/hadoop-root-datanode-b7a42f79339c.out Starting secondary namenodes [0.0.0.0] 0.0.0.0: starting secondarynamenode, logging to /usr/local/hadoop/logs/hadoop-root-secondarynamenode-b7a42f79339c.out starting yarn daemons starting resourcemanager, logging to /usr/local/hadoop/logs/yarn--resourcemanager-b7a42f79339c.out localhost: starting nodemanager, logging to /usr/local/hadoop/logs/yarn-root-nodemanager-b7a42f79339c.out

启动成功后命令行shell会自动进入Hadoop的容器环境,不需要执行docker exec。在容器环境进入/usr/local/hadoop/sbin,执行./start-all.sh和./mr-jobhistory-daemon.sh start historyserver,如下

bash-4.1# cd /usr/local/hadoop/sbin bash-4.1# ./start-all.sh This script is Deprecated. Instead use start-dfs.sh and start-yarn.sh Starting namenodes on [b7a42f79339c] b7a42f79339c: namenode running as process 128. Stop it first. localhost: datanode running as process 219. Stop it first. Starting secondary namenodes [0.0.0.0] 0.0.0.0: secondarynamenode running as process 402. Stop it first. starting yarn daemons resourcemanager running as process 547. Stop it first. localhost: nodemanager running as process 641. Stop it first. bash-4.1# ./mr-jobhistory-daemon.sh start historyserver chown: missing operand after `/usr/local/hadoop/logs' Try `chown --help' for more information. starting historyserver, logging to /usr/local/hadoop/logs/mapred--historyserver-b7a42f79339c.out

Hadoop启动完成,如此简单。

要问分布式部署有多麻烦,数数光配置文件就有多少个吧!我亲眼见过一个hadoop老鸟,因为新换的服务器hostname主机名带横线“-”,配了一上午,环境硬是没起来。

运行自带的例子

回到Hadoop主目录,运行示例程序

bash-4.1# cd /usr/local/hadoop bash-4.1# bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.0.jar grep input output 'dfs[a-z.]+' 20/07/05 22:34:41 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032 20/07/05 22:34:43 INFO input.FileInputFormat: Total input paths to process : 31 20/07/05 22:34:43 INFO mapreduce.JobSubmitter: number of splits:31 20/07/05 22:34:44 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1594002714328_0001 20/07/05 22:34:44 INFO impl.YarnClientImpl: Submitted application application_1594002714328_0001 20/07/05 22:34:45 INFO mapreduce.Job: The url to track the job: http://b7a42f79339c:8088/proxy/application_1594002714328_0001/ 20/07/05 22:34:45 INFO mapreduce.Job: Running job: job_1594002714328_0001 20/07/05 22:35:04 INFO mapreduce.Job: Job job_1594002714328_0001 running in uber mode : false 20/07/05 22:35:04 INFO mapreduce.Job: map 0% reduce 0% 20/07/05 22:37:59 INFO mapreduce.Job: map 11% reduce 0% 20/07/05 22:38:05 INFO mapreduce.Job: map 12% reduce 0%

mapreduce计算完成,有如下输出

20/07/05 22:55:26 INFO mapreduce.Job: Counters: 49 File System Counters FILE: Number of bytes read=291 FILE: Number of bytes written=230541 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=569 HDFS: Number of bytes written=197 HDFS: Number of read operations=7 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=1 Launched reduce tasks=1 Data-local map tasks=1 Total time spent by all maps in occupied slots (ms)=5929 Total time spent by all reduces in occupied slots (ms)=8545 Total time spent by all map tasks (ms)=5929 Total time spent by all reduce tasks (ms)=8545 Total vcore-seconds taken by all map tasks=5929 Total vcore-seconds taken by all reduce tasks=8545 Total megabyte-seconds taken by all map tasks=6071296 Total megabyte-seconds taken by all reduce tasks=8750080 Map-Reduce Framework Map input records=11 Map output records=11 Map output bytes=263 Map output materialized bytes=291 Input split bytes=132 Combine input records=0 Combine output records=0 Reduce input groups=5 Reduce shuffle bytes=291 Reduce input records=11 Reduce output records=11 Spilled Records=22 Shuffled Maps =1 Failed Shuffles=0 Merged Map outputs=1 GC time elapsed (ms)=159 CPU time spent (ms)=1280 Physical memory (bytes) snapshot=303452160 Virtual memory (bytes) snapshot=1291390976 Total committed heap usage (bytes)=136450048 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=437 File Output Format Counters Bytes Written=197

hdfs命令查看输出结果

bash-4.1# bin/hdfs dfs -cat output/* 6 dfs.audit.logger 4 dfs.class 3 dfs.server.namenode. 2 dfs.period 2 dfs.audit.log.maxfilesize 2 dfs.audit.log.maxbackupindex 1 dfsmetrics.log 1 dfsadmin 1 dfs.servers 1 dfs.replication 1 dfs.file

例子讲解

grep是一个在输入中计算正则表达式匹配的mapreduce程序,筛选出符合正则的字符串以及出现次数。

shell的grep结果会显示完整的一行,这个命令只显示行中匹配的那个字符串

grep input output 'dfs[a-z.]+'

正则表达式dfs[a-z.]+,表示字符串要以dfs开头,后面是小写字母或者换行符\n之外的任意单个字符都可以,数量一个或者多个。 输入是input里的所有文件,

bash-4.1# ls -lrt total 48 -rw-r--r--. 1 root root 690 May 16 2015 yarn-site.xml -rw-r--r--. 1 root root 5511 May 16 2015 kms-site.xml -rw-r--r--. 1 root root 3518 May 16 2015 kms-acls.xml -rw-r--r--. 1 root root 620 May 16 2015 httpfs-site.xml -rw-r--r--. 1 root root 775 May 16 2015 hdfs-site.xml -rw-r--r--. 1 root root 9683 May 16 2015 hadoop-policy.xml -rw-r--r--. 1 root root 774 May 16 2015 core-site.xml -rw-r--r--. 1 root root 4436 May 16 2015 capacity-scheduler.xml

管理系统介绍

Hadoop提供了web界面的管理系统,

端口号 用途
50070 Hadoop Namenode UI端口
50075 Hadoop Datanode UI端口
50090 Hadoop SecondaryNamenode 端口
50030 JobTracker监控端口
50060 TaskTrackers端口
8088 Yarn任务监控端口
60010 Hbase HMaster监控UI端口
60030 Hbase HRegionServer端口
8080 Spark监控UI端口
4040 Spark任务UI端口

加命令参数

docker run命令要加入参数,才能访问UI管理页面

docker run -it -p 50070:50070 -p 8088:8088 -p 50075:50075 sequenceiq/hadoop-docker:2.7.0 /etc/bootstrap.sh -bash --privileged=true

执行这条命令后在宿主机浏览器就可以查看系统了,当然如果Linux有浏览器也可以查看。我的Linux没有图形界面,所以在宿主机查看。

50070 Hadoop Namenode UI端口

50075 Hadoop Datanode UI端口

8088 Yarn任务监控端口

已完成和正在运行的mapreduce任务都可以在8088里查看,上图有gerp和wordcount两个任务。

一些问题

一、./sbin/mr-jobhistory-daemon.sh start historyserver必须执行,否则运行任务过程中会报

20/06/29 21:18:49 INFO ipc.Client: Retrying connect to server: 0.0.0.0/0.0.0.0:10020. Already tried 9 time(s); retry policy is RetryUpToMaximumCountWithFixedSleep(maxRetries=10, sleepTime=1000 MILLISECONDS) java.io.IOException: java.net.ConnectException: Call From 87a4217b9f8a/172.17.0.1 to 0.0.0.0:10020 failed on connection exception: java.net.ConnectException: Connection refused; For more details see: Job job_1592960164748_0001错误

三、docker run命令后面必须加--privileged=true,否则运行任务过程中会报java.io.IOException: Job status not available

四、注意,Hadoop 默认不会覆盖结果文件,因此再次运行上面实例会提示出错,需要先将 ./output 删除。或者换成output01试试?

总结

本文方法可以低成本的完成Hadoop的安装配置,对于学习理解和开发测试都有帮助的。如果开发自己的Hadoop程序,需要将程序打jar包上传到share/hadoop/mapreduce/目录,执行

bin/hadoop jar share/hadoop/mapreduce/yourtest.jar

来运行程序观察效果。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:笔记
下一篇:Type-C集线器解决笔记本的转接烦恼
相关文章

 发表评论

暂时没有评论,来抢沙发吧~