Hadoop框架:MapReduce基本原理和入门案例

网友投稿 353 2022-11-25

Hadoop框架:MapReduce基本原理和入门案例

一、MapReduce概述

1、基本概念

Hadoop核心组件之一:分布式计算的方案MapReduce,是一种编程模型,用于大规模数据集的并行运算,其中Map(映射)和Reduce(归约)。

MapReduce既是一个编程模型,也是一个计算组件,处理的过程分为两个阶段,Map阶段:负责把任务分解为多个小任务,Reduce负责把多个小任务的处理结果进行汇总。其中Map阶段主要输入是一对Key-Value,经过map计算后输出一对Key-Value值;然后将相同Key合并,形成Key-Value集合;再将这个Key-Value集合转入Reduce阶段,经过计算输出最终Key-Value结果集。

2、特点描述

MapReduce可以实现基于上千台服务器并发工作,提供很强大的数据处理能力,如果其中单台服务挂掉,计算任务会自动转义到另外节点执行,保证高容错性;但是MapReduce不适应于实时计算与流式计算,计算的数据是静态的。

二、操作案例

1、流程描述

数据文件一般以CSV格式居多,数据行通常以空格分隔,这里需要考虑数据内容特点;

文件经过切片分配在不同的MapTask任务中并发执行;

MapTask任务执行完毕之后,执行ReduceTask任务,依赖Map阶段的数据;

ReduceTask任务执行完毕后,输出文件结果。

2、基础配置

hadoop: # 读取的文件源 inputPath: hdfs://hop01:9000/hopdir/javaNew.txt # 该路径必须是程序运行前不存在的 outputPath: /wordOut

3、Mapper程序

public class WordMapper extends Mapper { Text mapKey = new Text(); IntWritable mapValue = new IntWritable(1); @Override protected void map (LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 1、读取行 String line = value.toString(); // 2、行内容切割,根据文件中分隔符 String[] words = line.split(" "); // 3、存储 for (String word : words) { mapKey.set(word); context.write(mapKey, mapValue); } } }

4、Reducer程序

public class WordReducer extends Reducer { int sum ; IntWritable value = new IntWritable(); @Override protected void reduce(Text key, Iterable values,Context context) throws IOException, InterruptedException { // 1、累加求和统计 sum = 0; for (IntWritable count : values) { sum += count.get(); } // 2、输出结果 value.set(sum); context.write(key,value); } }

5、执行程序

6、执行结果查看

将应用程序打包放到hop01服务上执行;

java -jar map-reduce-case01.jar

三、案例分析

1、数据类型

Java数据类型与对应的Hadoop数据序列化类型;

Java类型 Writable类型 Java类型 Writable类型
String Text float FloatWritable
int IntWritable long LongWritable
boolean BooleanWritable double DoubleWritable
byte ByteWritable array DoubleWritable
map MapWritable

2、核心模块

Mapper模块:处理输入的数据,业务逻辑在map()方法中完成,输出的数据也是KV格式;

Reducer模块:处理Map程序输出的KV数据,业务逻辑在reduce()方法中;

Driver模块:将程序提交到yarn进行调度,提交封装了运行参数的job对象;

四、序列化操作

1、序列化简介

序列化:将内存中对象转换为二进制的字节序列,可以通过输出流持久化存储或者网络传输;

反序列化:接收输入字节流或者读取磁盘持久化的数据,加载到内存的对象过程;

Hadoop序列化相关接口:Writable实现的序列化机制、Comparable管理Key的排序问题;

2、案例实现

案例描述:读取文件,并对文件相同的行做数据累加计算,输出计算结果;该案例演示在本地执行,不把Jar包上传的hadoop服务器,驱动配置一致。

实体对象属性

public class AddEntity implements Writable { private long addNum01; private long addNum02; private long resNum; // 构造方法 public AddEntity() { super(); } public AddEntity(long addNum01, long addNum02) { super(); this.addNum01 = addNum01; this.addNum02 = addNum02; this.resNum = addNum01 + addNum02; } // 序列化 @Override public void write(DataOutput dataOutput) throws IOException { dataOutput.writeLong(addNum01); dataOutput.writeLong(addNum02); dataOutput.writeLong(resNum); } // 反序列化 @Override public void readFields(DataInput dataInput) throws IOException { // 注意:反序列化顺序和写序列化顺序一致 this.addNum01 = dataInput.readLong(); this.addNum02 = dataInput.readLong(); this.resNum = dataInput.readLong(); } // 省略Get和Set方法 }

Mapper机制

public class AddMapper extends Mapper { Text myKey = new Text(); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 读取行 String line = value.toString(); // 行内容切割 String[] lineArr = line.split(","); // 内容格式处理 String lineNum = lineArr[0]; long addNum01 = Long.parseLong(lineArr[1]); long addNum02 = Long.parseLong(lineArr[2]); myKey.set(lineNum); AddEntity myValue = new AddEntity(addNum01,addNum02); // 输出 context.write(myKey, myValue); } }

Reducer机制

public class AddReducer extends Reducer { @Override protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException { long addNum01Sum = 0; long addNum02Sum = 0; // 处理Key相同 for (AddEntity addEntity : values) { addNum01Sum += addEntity.getAddNum01(); addNum02Sum += addEntity.getAddNum02(); } // 最终输出 AddEntity addRes = new AddEntity(addNum01Sum, addNum02Sum); context.write(key, addRes); } }

案例最终结果:

$$End$$

Gitee主页:https://gitee.com/cicadasmile/butte-java-note

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Java中Map集合的常用方法详解
下一篇:两串口服务器
相关文章

 发表评论

暂时没有评论,来抢沙发吧~