hadoop 3节点高可用分布式安装

网友投稿 271 2022-11-25

hadoop 3节点高可用分布式安装

1、先对即将安装的服务进行规划

Ip host安装软件
进程
10.10.10.5
masterhadoop、zookeeperNameNode
DFSZKFailoverController
JournalNode
DataNode
ResourceManager
jobHistoryServer
NodeManager
10.10.10.6
slave1hadoop、zookeeperNameNode
DFSZKFailoverController
JournalNode
dataNode
ResourceManager
NodeManager
QuoruPeerMain
10.10.10.6slave2hadoop、zookeeperJournalNode
DataNode
NodeManager
QuorumPeerMain

环境准备

关闭防火墙

systemctl stop  iptables.service

systemctl disable iptables.service

systemctl disable iptables.service

1、上传安装包 hadoop-2.6.0-cdh5.16.2.tar.gz  zookeeper-3.4.5-cdh5.16.2.tar.gz 到 /opt/soft 目录下

2、设置主机名

master:

hostname master

vi /etc/sysconfig/network

slave1:

hostname  slave1

slave2:

hostname  slave2

配置ip 和hostname 的映射关系

vim  cat /etc/hosts

通过 将修改后的文件发到slave1 和slave2

scp /etc/hosts root@slave1:/etc/

scp /etc/hosts root@slave2:/etc/

我在三台服务上配置了互信,因此可以直接发送,若不能直接发送,可百度看看互信怎么配置

3、 配置jdk 环境 hadoop zookeeper

如图我的jdk jar 包 解压的文件在 /usr/local/jdk 、hadoop:/opt/soft2/hadoop zookeeper:/opt/soft2/zookeeper

4、修改zookeeper 配置

cd /opt/soft2/zookeeper/conf

cp zoo_sample.cfg   zoo.cfg

vim  zoo.cfg

主要修改dataDir,zk 存放数据的路径

mkdir /opt/soft2/zookeeper/zkData

使用 scp -r zookeeper slave1:/opt/soft2/

使用 scp -r zookeeper slave2:/opt/soft2/

将zookeeper 文件整个拷贝到其余节点

在每个 节点data目录中根据根据配置文件的

master中  echo 1 > /opt/soft2/zookeeper/zkData/myid

slave1中  echo 2 > /opt/soft2/zookeeper/zkData/myid

slave2中  echo 3 > /opt/soft2/zookeeper/zkData/myid

安装hadoop

修改hadoop 的配置文件

cd /opt/soft2/hadoop/etc/hadoop

vim  hadoop-env.sh

配置jdk 环境

配置hadoop的核心配置

vim core-site.xml

fs.defaultFS

hdfs://mycluster

fs.trash.checkpoint.interval

0

fs.trash.interval

10080

hadoop.tmp.dir

/opt/soft2/hadoop/data

ha.zookeeper.quorum

master:2181,slave1:2181,slave2:2181

ha.zookeeper.session-timeout.ms

2000

hadoop.proxyuser.hadoop.hosts

*

hadoop.proxyuser.hadoop.groups

*

io.compression.codecs

org.apache.hadoop.io.compress.GzipCodec,

org.apache.hadoop.io.compress.DefaultCodec,

org.apache.hadoop.io.compress.BZip2Codec,

org.apache.hadoop.io.compress.SnappyCodec

vim hdfs-site.xml  配置hdfs

dfs.permissions.superusergroup

hadoop

dfs.webhdfs.enabled

true

dfs.namenode.name.dir

/opt/soft2/hadoop/data/dfsname

namenode 存放name table(fsimage)本地目录(需要修改)

dfs.namenode.edits.dir

${dfs.namenode.name.dir}

namenode粗放 transaction file(edits)本地目录(需要修改)

dfs.datanode.data.dir

/opt/soft2/hadoop/data/dfsdata

datanode存放block本地目录(需要修改)

dfs.replication

3

dfs.blocksize

134217728

dfs.blocksize

134217728

dfs.nameservices

mycluster

dfs.ha.namenodes.mycluster

nn1,nn2

dfs.namenode.rpc-address.mycluster.nn1

master:8020

dfs.namenode.rpc-address.mycluster.nn2

slave1:8020

dfs.namenode.editlog同步 ============================================ -->

dfs.journalnode.用于存储editlog -->

dfs.namenode.shared.edits.dir

qjournal://master:8485;slave1:8485;slave2:8485/mycluster

dfs.journalnode.edits.dir

/home/hadoop/data/dfs/jn

dfs.client.failover.proxy.provider.ruozeclusterg10

org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider

dfs.ha.fencing.methods

sshfence

dfs.ha.fencing.ssh.private-key-files

/home/hadoop/.ssh/id_rsa

dfs.ha.fencing.ssh.connect-timeout

30000

dfs.ha.automatic-failover.enabled

true

dfs.hosts

/opt/soft2/hadoop/etc/hadoop/slaves

修改mapred-site.xml

配置中不存在该配置

cp mapred-site.xml.template mapred-site.xml

vim mapred-site.xml

mapreduce.framework.name

yarn

mapreduce.jobhistory.address

master:10020

mapreduce.jobhistory.webapp.address

slave1:19888

mapreduce.map.output.compress

true

mapreduce.map.output.compress.codec

org.apache.hadoop.io.compress.SnappyCodec

vim  slaves 将下列添加进去

master

slave1

slave2

vim  yarn-env.sh

vim yarn-site.xml

yarn.nodemanager.aux-services

mapreduce_shuffle

yarn.nodemanager.aux-services.mapreduce.shuffle.class

org.apache.hadoop.mapred.ShuffleHandler

yarn.nodemanager.localizer.address

0.0.0.0:23344

Address where the localizer IPC is.

yarn.nodemanager.webapp.address

0.0.0.0:23999

NM Webapp address.

yarn.resourcemanager.connect.retry-interval.ms

2000

yarn.resourcemanager.ha.enabled

true

yarn.resourcemanager.ha.automatic-failover.enabled

true

yarn.resourcemanager.ha.automatic-failover.embedded

true

yarn.resourcemanager.cluster-id

yarn-cluster

yarn.resourcemanager.ha.rm-ids

rm1,rm2

yarn.resourcemanager.scheduler.class

org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler

yarn.resourcemanager.recovery.enabled

true

yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms

5000

yarn.resourcemanager.store.class

org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore

yarn.resourcemanager.zk-address

master:2181,slave1:2181,slave2:2181

yarn.resourcemanager.zk.state-store.address

master:2181,slave1:2181,slave2:2181

yarn.resourcemanager.address.rm1

master:23140

yarn.resourcemanager.address.rm2

slave1:23140

yarn.resourcemanager.scheduler.address.rm1

master:23130

yarn.resourcemanager.scheduler.address.rm2

slave1:23130

yarn.resourcemanager.admin.address.rm1

master:23141

yarn.resourcemanager.admin.address.rm2

slave1:23141

yarn.resourcemanager.resource-tracker.address.rm1

master:23125

yarn.resourcemanager.resource-tracker.address.rm2

slave1:23125

yarn.resourcemanager.webapp.address.rm1

master:8088

yarn.resourcemanager.webapp.address.rm2

slave1:8088

yarn.resourcemanager.webapp.:  启动 zkServer.sh start   查看状态 zkServer.sh status

启动hadoop(hdfs+yarn)

1、三台电脑均启动日志  JournalNode

hadoop-daemon.sh start journalnode

2、格式化hadoop

hadoop namenode -format

将生成的元数据发送到各个节点

[root@master hadoop]# scp -r data slave1:/opt/soft2/hadoop/

fsimage_0000000000000000000                                                                                                               100%  317     0.3KB/s   00:00

VERSION                                                                                                                                   100%  202     0.2KB/s   00:00

fsimage_0000000000000000000.md5                                                                                                           100%   62     0.1KB/s   00:00

seen_txid

3、初始化zkfc

hdfs zkfc -formatZK

4、启动hdfs的分布式文件系统

start-dfs.sh

5、启动yarn

start-yarn.sh

关闭集群

关闭yarn stop-yarn.sh

关闭hdfs stop-dfs.sh

关闭zookeeper:  所有的节点都执行   zkServer.sh stop

启动集群

1、启动zookeeper 所有的节点都执行 zkServer.sh start  2、启动hadoop start-dfs.sh start-yarn.sh 另一个备份节点 yarn-daemon.sh start resourcemanager

监控集群: hdfs dfsadmin -report

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:【干货】BAT大佬告诉你如何埋点
下一篇:I2C总线技术在HDTV数字地面接收机中的应用解析
相关文章

 发表评论

暂时没有评论,来抢沙发吧~