Combiner 合并 知识点 案例
一、概述
1、Combiner是MR程序中Mapper和Reducer之外的一种组件
2、Combiner继承Reducer
3、Combiner在每个Map Task的节点上运行, Reducer接收全局的Mapper结果
4、Combiner对每个Map Task的输出进行局部汇总,减少网络传输
5、并不是所有的运算,都可以使用局部汇总,如求平均值
二、自定义Combiner类
1、继承Reducer,重写reduce方法
2、在driver中设置job的Combiner驱动
3、Combiner的输入kv 与 Mapper的输出 kv 一致, Combiner的输出kv 与 Reducer的输入 kv一致
4、reduce()的作用是局部统计Map Task的输出结果与Mapper的语法相似
三、WordCount
1、Mapper
package com.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class WordCountMapper extends Mapper{
Text k = new Text();
IntWritable v = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// 1. 读取行
String line = value.toString();
// 2. 切割
String[] words = line.split("\\s");
// 3. 循环写入
for (String word : words) {
k.set(word);
context.write(k, v);
}
}
}
2、Combiner
package com.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class WordCountCombiner extends Reducer {
IntWritable v = new IntWritable();
@Override
protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
int sum = 0;
// 1.累加
for (IntWritable value : values) {
sum += value.get();
}
v.set(sum);
// 2.写入
context.write(key, v);
}
}
3、Reducer
package com.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class WordCountReducer extends Reducer {
IntWritable v = new IntWritable();
@Override
protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
// 1. 累加
int sum = 0;
for (IntWritable value : values) {
sum += value.get();
}
v.set(sum);
// 2. 写入
context.write(key, v);
}
}
4、Driver
package com.wordcount;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class WordCountDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
args = new String[]{"E:\\a\\inputFile\\test.txt", "E:\\a\\output3"};
// 1.job
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
// 2.设置jar
job.setJarByClass(WordCountDriver.class);
// 3.关联mapper和reducer
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
// 4.设置mapper输出的 k, v
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 5.设置输出结果的k, v
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 7.设置 Combiner 类
job.setCombinerClass(WordCountCombiner.class);
// 6.设置文件的输入输出值
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 7.提交任务
boolean wait = job.waitForCompletion(true);
System.exit(wait? 0: 1);
}
}
注意:
因为Combiner和Reducer的代码逻辑一样
因此在Driver中添加下面内容即可
job.setCombinerClass(WordCountReducer.class);
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
暂时没有评论,来抢沙发吧~