linux怎么查看本机内存大小
339
2022-11-23
Ka波段宽带波导微带变换设计解析
1 引言
2 快速设计原理
图1 E面探针过渡结构
采用HFSS建模仿真得到仿真流程如下:首先综合优化探针长度D、宽度WP以及离波导短路面的距离L,使得从波导壁为端面的探针阻抗在宽带范围内对频率不敏感,仿真结果如图2(b)。由图2(b)可知此时探针阻抗为一容性阻抗,为了匹配至50欧姆,需要探针端接高阻抗线,优化高阻抗线宽度WI、长度LI,匹配探针阻抗至虚部消失,匹配结果如图2(c)所示,此时端口阻抗约为37.5欧姆。最后通过1/4波长微带线最终将阻抗匹配至50欧姆,匹配结果如图2(d)所示,此时在30GHz~40GHz的频段内阻抗基本匹配至50欧姆。
同时仿真计算应考虑实际加工以及装配误差,仿真应进行相应的容差分析,在此分析基础上对结构参数作相应调整以降低装配及加工因素对性能的影响。
(a)
(b)
(c)
(d)
图2 HFSS建模及仿真结果
为了便于测试,一对波导微带变换采用背对背方式连接,微带采用介电常数9.8的氧化铝陶瓷基板加工,基板厚度0.25mm;陶瓷板长度为10mm; 波导采用BJ-320标准波导,测试结果如图3所示(dB(3,4)、VSWR3为仿真结果,dB(2,1)、VSWR1为测试结果)。由测试结果可知在30GHz~40GHz频段内两个波导微带变换以及微带线损耗《1dB,VSWR《1.5,扣除微带线损耗以及波导损耗0.4~0.6 dB,可估算出波导微带变换差损《0.3dB。同时由图3可以看到驻波的仿真结果与测试结果相差不大,测试的插损较仿真值大0.6dB,原因是因为仿真时对波导以及微带线设置均为理想状态所致。
图3 仿真及测试结果
4 结论
本文介绍了一种采用HFSS快速设计微带波导变换的方法,通过仿真以及试验验证均能取得良好的性能,试制的Ka波导微带变换能够用于各种波导接口毫米波系统中,同时该设计方法同样适用于更高频段的波导微带变换。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~