OpenCV + CPP 系列(十九)直方图比较 与 直方图反向投影

网友投稿 292 2022-11-23

OpenCV + CPP 系列(十九)直方图比较 与 直方图反向投影

文章目录

​​一、直方图比较​​

​​计算公式​​​​效果演示​​

​​二、直方图反向投影​​

一、直方图比较

对输入的两张图像计算得到直方图H1与H2,归一化到相同的尺度空间,然后可以通过计算H1与H2的之间的距离得到两个直方图的相似程度,进而比较图像本身的相似程度。

Opencv提供的比较方法有四种:

Correlation相关性比较 相关性程度 = (1,-1) ,为1时相关性最强Chi-Square卡方比较 (越接近0,两个直方图越相似)Intersection十字交叉性 (取两个直方图每个相同位置的值的最小值,然后求和,这个比较方式不是很好,不建议使用)Bhattacharyya distance巴氏距离 (比较结果是很准的,计算结果范围为 0-1 ,0表示两个直方图非常相关,1最不相似)

计算公式

InputArray h1,     // 直方图数据,下同

InputArray H2,

int method      // 比较方法,上述四种方法之一

)

#pragma once#include using namespace cv;class QuickDemo {public: ... void compareHist_Demo(Mat& image1, Mat& image2, Mat& image3); void backProjection_Demo(Mat& image1);};

主函数调用该类的公共成员函数

#include #include #include using namespace cv;int main(int argc, char** argv) { Mat src1 = imread("D:\\Desktop\\pandas_small22.png"); Mat src2 = imread("D:\\Desktop\\pandas_small22_test1.png"); Mat src3 = imread("D:\\Desktop\\pandas_small22_test2.png"); if (src1.empty()) { printf("Could not load images src1...\n"); return -1; } if (src2.empty()) { printf("Could not load images src2...\n"); return -1; } if (src3.empty()) { printf("Could not load images src3...\n"); return -1; } QuickDemo qk; qk.compareHist_Demo(src1, src2, src3); qk.backProjection_Demo(src1); waitKey(0); destroyAllWindows(); return 0;}

源文件 quick_demo.cpp:实现类与公共函数

效果演示

void QuickDemo::compareHist_Demo(Mat& image, Mat& test1, Mat& test2) { Mat hsv_dst1, hsv_dst2, hsv_dst3; cvtColor(image, hsv_dst1, COLOR_BGR2HSV); cvtColor(test1, hsv_dst2, COLOR_BGR2HSV); cvtColor(test2, hsv_dst3, COLOR_BGR2HSV); Mat hsv_src1 = hsv_dst1.clone(); Mat hsv_src2 = hsv_dst2.clone(); Mat hsv_src3 = hsv_dst3.clone(); int h_bins = 50; int s_bins = 60; int histSize[] = { h_bins, s_bins }; //h = [0-179] s=[0,255] float h_ranges[] = { 0,180 }; float s_ranges[] = { 0,256 }; const float* ranges[] = { h_ranges, s_ranges }; // Use the o-th and 1-st channels int channels[] = { 0,1 }; MatND hist_base; MatND hist_test1; MatND hist_test2; calcHist(&hsv_dst1, 1, channels, Mat(), hist_base, 2, histSize, ranges, true, false); normalize(hist_base, hist_base, 0, 1, NORM_MINMAX, -1, Mat()); calcHist(&hsv_dst2, 1, channels, Mat(), hist_test1, 2, histSize, ranges, true, false); normalize(hist_base, hist_base, 0, 1, NORM_MINMAX, -1, Mat()); calcHist(&hsv_dst3, 1, channels, Mat(), hist_test2, 2, histSize, ranges, true, false); normalize(hist_base, hist_base, 0, 1, NORM_MINMAX, -1, Mat()); int method[4] = { HISTCMP_CORREL ,HISTCMP_CHISQR, HISTCMP_INTERSECT,HISTCMP_BHATTACHARYYA }; for (int i = 0; i < 4; i++) { double basebase = compareHist(hist_base, hist_base, method[i]); double basetest1 = compareHist(hist_base, hist_test1, method[i]); double basetest2 = compareHist(hist_base, hist_test2, method[i]); putText(hsv_dst1, to_string(basebase), Point(20, image.rows - 20), FONT_HERSHEY_COMPLEX, 0.8, Scalar(255, 255, 0), 2, 8); putText(hsv_dst2, to_string(basetest1), Point(20, image.rows - 20), FONT_HERSHEY_COMPLEX, 0.8, Scalar(255, 255, 0), 2, 8); putText(hsv_dst3, to_string(basetest2), Point(20, image.rows - 20), FONT_HERSHEY_COMPLEX, 0.8, Scalar(255, 255, 0), 2, 8); imshow("src", hsv_dst1); imshow("dst1", hsv_dst2); imshow("dst2", hsv_dst3); // 清空图片文字 hsv_src1.copyTo(hsv_dst1); hsv_src2.copyTo(hsv_dst2); hsv_src3.copyTo(hsv_dst3); waitKey(0); }}

对测试图片进行光影调整后分别保存为test1,test2副本后测试:

比较方法:HISTCMP_CORREL

比较方法:HISTCMP_CHISQR

比较方法:HISTCMP_INTERSECT

比较方法:HISTCMP_BHATTACHARYYA

二、直方图反向投影

​​OpenCV—python 反向投影 ROI​​

反向投影是反映直方图模型在目标图像中的分布情况

简单点说就是用直方图模型去目标图像中寻找是否有相似的对象。通常用HSV色彩空间的HS两个通道直方图模型。

一般检查流程

加载图片imread将图像从RGB色彩空间转换到HSV色彩空间cvtColor计算直方图和归一化calcHist与normalizeMat与MatND其中Mat表示二维数组,MatND表示三维或者多维数据,此处均可以用Mat表示。计算反向投影图像 - calcBackProject

共三个重载函数,我这里只列出一个

void calcBackProject( const Mat* images,    输入图像,图像深度必须位CV_8U,CV_16U或CV_32F中的一种

int

nimages,       输入图像的数量

const int*

channels,    用于计算反向投影的通道列表,通道数必须与直方图维度相匹配

InputArray

hist,      输入的直方图,直方图的bin可以是密集(dense)或稀疏(sparse)

OutputArray

backProject,  目标反向投影输出图像,是一个单通道图像

const float**

ranges,    方图中每个维度bin的取值范围

double

scale = 1,      可选输出反向投影的比例因子

bool

uniform = true     直方图是否均匀分布(uniform)的标识符,有默认值true

)

void QuickDemo::backProjection_Demo(Mat& image, Mat& test1) { Mat hsv,h_mat; cvtColor(image, hsv, COLOR_BGR2HSV); h_mat = Mat::zeros(hsv.size(), hsv.depth()); int nchannels[] = { 0,0 }; mixChannels(&hsv,1, &h_mat, 1, nchannels, 1); int binSize = 12; float range[] = { 0,180 }; const float* histRange{ range }; Mat h_hist; calcHist(&h_mat, 1, 0, Mat(), h_hist, 1, &binSize, &histRange, true, false); normalize(h_hist, h_hist, 0, 255, NORM_MINMAX, -1, Mat()); Mat backProjectImage; calcBackProject(&h_mat, 1,0, h_hist, backProjectImage, &histRange, 1, true); imshow("backPro", backProjectImage); int hist_h = 400; int hist_w = 400; Mat hist_Image = Mat::zeros(hist_w, hist_h, CV_8UC3); int bin_w = hist_w / binSize; for (int i = 0; i < binSize; i++) { rectangle(hist_Image, Point((i - 1) * bin_w, hist_h - cvRound(h_hist.at(i - 1) * (400 / 255))), Point(i* bin_w, hist_h), Scalar(255, 255, 0), -1); } imshow("histogram", hist_Image);}

使用效果:

使用 ​​trackbar 详情​​

使用trackbar, 代码有问题,请教大佬。

static void on_bin_hist(int binSize_, void* h_mat_) { Mat h_hist; Mat h_mat = *((Mat*)h_mat_); int binSize = MAX(binSize_, 2); float range[] = { 0,180 }; const float* histRange{ range }; calcHist(&h_mat, 1, 0, Mat(), h_hist, 1, &binSize, &histRange, true, false); normalize(h_hist, h_hist, 0, 255, NORM_MINMAX, -1, Mat()); Mat backProjectImage; calcBackProject(&h_mat, 1, 0, h_hist, backProjectImage, &histRange, 1, true); imshow("backPro", backProjectImage); int hist_h = 400; int hist_w = 400; Mat hist_Image = Mat::zeros(hist_w, hist_h, CV_8UC3); int bin_w = cvRound((double)hist_w / binSize); for (int i = 0; i < binSize; i++) { rectangle(hist_Image, Point((i - 1) * bin_w, hist_h - cvRound(h_hist.at(i - 1) * (400 / 255))), Point(i * bin_w, hist_h), Scalar(255, 255, 0), -1); } imshow("histogram", hist_Image);}void QuickDemo::backProjection_track_bar_Demo(Mat& image) { namedWindow("histogram", WINDOW_NORMAL); namedWindow("backPro", WINDOW_NORMAL); int binSize = 12; Mat hsv, h_mat; cvtColor(image, hsv, COLOR_BGR2HSV); h_mat = Mat::zeros(hsv.size(), hsv.depth()); int nchannels[] = { 0,0 }; mixChannels(&hsv, 1, &h_mat, 1, nchannels, 1); createTrackbar("hist_bins", "histogram", &binSize, 180, on_bin_hist, &h_mat); on_bin_hist(binSize, &h_mat);}

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:MAX7370 8×8键盘开关控制器,具有更高的防静电保护
下一篇:区块链产业全景图 附下载地址
相关文章

 发表评论

暂时没有评论,来抢沙发吧~