【数据分析可视化】数据聚合技术Aggregation

网友投稿 262 2022-11-23

【数据分析可视化】数据聚合技术Aggregation

import numpy as np
import pandas as pd
from pandas import Series, DataFrame
# 读入城市天气csv文件
df = pd.read_csv('/Users/bennyrhys/Desktop/数据分析可视化-数据集/homework/city_weather.csv')
df
date city temperature wind
0 03/01/2016 BJ 8 5
1 17/01/2016 BJ 12 2
2 31/01/2016 BJ 19 2
3 14/02/2016 BJ -3 3
4 28/02/2016 BJ 19 2
5 13/03/2016 BJ 5 3
6 27/03/2016 SH -4 4
7 10/04/2016 SH 19 3
8 24/04/2016 SH 20 3
9 08/05/2016 SH 17 3
10 22/05/2016 SH 4 2
11 05/06/2016 SH -10 4
12 19/06/2016 SH 0 5
13 03/07/2016 SH -9 5
14 17/07/2016 GZ 10 2
15 31/07/2016 GZ -1 5
16 14/08/2016 GZ 1 5
17 28/08/2016 GZ 25 4
18 11/09/2016 SZ 20 1
19 25/09/2016 SZ -10 4
# 根据城市进行分组
g = df.groupby('city')
g
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x1201a06d0>
# 可以直接进行聚合操作
g.mean()
temperature wind
city
BJ 10.000 2.833333
GZ 8.750 4.000000
SH 4.625 3.625000
SZ 5.000 2.500000
g.describe()
temperature wind
count mean std min 25% 50% 75% max count mean std min 25% 50% 75% max
city
BJ 6.0 10.000 8.532292 -3.0 5.75 10.0 17.25 19.0 6.0 2.833333 1.169045 2.0 2.00 2.5 3.00 5.0
GZ 4.0 8.750 11.842719 -1.0 0.50 5.5 13.75 25.0 4.0 4.000000 1.414214 2.0 3.50 4.5 5.00 5.0
SH 8.0 4.625 12.489281 -10.0 -5.25 2.0 17.50 20.0 8.0 3.625000 1.060660 2.0 3.00 3.5 4.25 5.0
SZ 2.0 5.000 21.213203 -10.0 -2.50 5.0 12.50 20.0 2.0 2.500000 2.121320 1.0 1.75 2.5 3.25 4.0
# 传入聚合函数 使用
g.agg('min')
date temperature wind
city
BJ 03/01/2016 -3 2
GZ 14/08/2016 -1 2
SH 03/07/2016 -10 2
SZ 11/09/2016 -10 1
# 测试自定义聚合函数
def foo(attr):
    print(type(attr)),print(attr)
    return np.nan
g.agg(foo)
<class 'pandas.core.series.Series'>
0    03/01/2016
1    17/01/2016
2    31/01/2016
3    14/02/2016
4    28/02/2016
5    13/03/2016
Name: date, dtype: object
<class 'pandas.core.series.Series'>
14    17/07/2016
15    31/07/2016
16    14/08/2016
17    28/08/2016
Name: date, dtype: object
<class 'pandas.core.series.Series'>
6     27/03/2016
7     10/04/2016
8     24/04/2016
9     08/05/2016
10    22/05/2016
11    05/06/2016
12    19/06/2016
13    03/07/2016
Name: date, dtype: object
<class 'pandas.core.series.Series'>
18    11/09/2016
19    25/09/2016
Name: date, dtype: object
<class 'pandas.core.series.Series'>
0     8
1    12
2    19
3    -3
4    19
5     5
Name: temperature, dtype: int64
<class 'pandas.core.series.Series'>
14    10
15    -1
16     1
17    25
Name: temperature, dtype: int64
<class 'pandas.core.series.Series'>
6     -4
7     19
8     20
9     17
10     4
11   -10
12     0
13    -9
Name: temperature, dtype: int64
<class 'pandas.core.series.Series'>
18    20
19   -10
Name: temperature, dtype: int64
<class 'pandas.core.series.Series'>
0    5
1    2
2    2
3    3
4    2
5    3
Name: wind, dtype: int64
<class 'pandas.core.series.Series'>
14    2
15    5
16    5
17    4
Name: wind, dtype: int64
<class 'pandas.core.series.Series'>
6     4
7     3
8     3
9     3
10    2
11    4
12    5
13    5
Name: wind, dtype: int64
<class 'pandas.core.series.Series'>
18    1
19    4
Name: wind, dtype: int64
date temperature wind
city
BJ NaN NaN NaN
GZ NaN NaN NaN
SH NaN NaN NaN
SZ NaN NaN NaN
# 自定义函数 聚合 (最大值-最小值)
def foo(attr):
    return attr.max() - attr.min()
g.agg(foo)
temperature wind
city
BJ 22 3
GZ 26 3
SH 30 3
SZ 30 3
# 对某两个列做groupBy
g_new = df.groupby(['city', 'wind'])
g_new
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x1213acdd0>
# 细分了风力的group
g_new.groups
{('BJ', 2): Int64Index([1, 2, 4], dtype='int64'),
 ('BJ', 3): Int64Index([3, 5], dtype='int64'),
 ('BJ', 5): Int64Index([0], dtype='int64'),
 ('GZ', 2): Int64Index([14], dtype='int64'),
 ('GZ', 4): Int64Index([17], dtype='int64'),
 ('GZ', 5): Int64Index([15, 16], dtype='int64'),
 ('SH', 2): Int64Index([10], dtype='int64'),
 ('SH', 3): Int64Index([7, 8, 9], dtype='int64'),
 ('SH', 4): Int64Index([6, 11], dtype='int64'),
 ('SH', 5): Int64Index([12, 13], dtype='int64'),
 ('SZ', 1): Int64Index([18], dtype='int64'),
 ('SZ', 4): Int64Index([19], dtype='int64')}
# 多列groupby get也要注意
g_new.get_group(('BJ',2))
date city temperature wind
1 17/01/2016 BJ 12 2
2 31/01/2016 BJ 19 2
4 28/02/2016 BJ 19 2
# 多列GroupBy的for
for (name_1, name_2), group in g_new:
    print(name_1, name_2)
    print(group)
BJ 2
         date city  temperature  wind
1  17/01/2016   BJ           12     2
2  31/01/2016   BJ           19     2
4  28/02/2016   BJ           19     2
BJ 3
         date city  temperature  wind
3  14/02/2016   BJ           -3     3
5  13/03/2016   BJ            5     3
BJ 5
         date city  temperature  wind
0  03/01/2016   BJ            8     5
GZ 2
          date city  temperature  wind
14  17/07/2016   GZ           10     2
GZ 4
          date city  temperature  wind
17  28/08/2016   GZ           25     4
GZ 5
          date city  temperature  wind
15  31/07/2016   GZ           -1     5
16  14/08/2016   GZ            1     5
SH 2
          date city  temperature  wind
10  22/05/2016   SH            4     2
SH 3
         date city  temperature  wind
7  10/04/2016   SH           19     3
8  24/04/2016   SH           20     3
9  08/05/2016   SH           17     3
SH 4
          date city  temperature  wind
6   27/03/2016   SH           -4     4
11  05/06/2016   SH          -10     4
SH 5
          date city  temperature  wind
12  19/06/2016   SH            0     5
13  03/07/2016   SH           -9     5
SZ 1
          date city  temperature  wind
18  11/09/2016   SZ           20     1
SZ 4
          date city  temperature  wind
19  25/09/2016   SZ          -10     4
g.groups
{'BJ': Int64Index([0, 1, 2, 3, 4, 5], dtype='int64'),
 'GZ': Int64Index([14, 15, 16, 17], dtype='int64'),
 'SH': Int64Index([6, 7, 8, 9, 10, 11, 12, 13], dtype='int64'),
 'SZ': Int64Index([18, 19], dtype='int64')}
# 单列group 获取获取某列
g.get_group('BJ')
date temperature wind
0 03/01/2016 8 5
1 17/01/2016 12 2
2 31/01/2016 19 2
3 14/02/2016 -3 3
4 28/02/2016 19 2
5 13/03/2016 5 3

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:【数据分析可视化】通过去重进行数据清洗
下一篇:利尔达推出新一代紫光展锐平台UIS8811 NB-IoT安全模组
相关文章

 发表评论

暂时没有评论,来抢沙发吧~