【数据分析可视化】通过apply进行数据预处理

网友投稿 255 2022-11-23

【数据分析可视化】通过apply进行数据预处理

import numpy as np
import pandas as pd
from pandas import Series, DataFrame
# 读取apply_demo.csv数据
link_csv = '/Users/bennyrhys/Desktop/数据分析可视化-数据集/homework/apply_demo.csv'
df = pd.read_csv(link_csv).head()
df
time data
0 1473411962 Symbol: APPL Seqno: 0 Price: 1623
1 1473411962 Symbol: APPL Seqno: 0 Price: 1623
2 1473411963 Symbol: APPL Seqno: 0 Price: 1623
3 1473411963 Symbol: APPL Seqno: 0 Price: 1623
4 1473411963 Symbol: APPL Seqno: 1 Price: 1649
df.size
10
# 新加一列Series
s1 = Series(['a']*10)
s1
0    a
1    a
2    a
3    a
4    a
5    a
6    a
7    a
8    a
9    a
dtype: object
df['A'] = s1
df.head()
time data A
0 1473411962 Symbol: APPL Seqno: 0 Price: 1623 a
1 1473411962 Symbol: APPL Seqno: 0 Price: 1623 a
2 1473411963 Symbol: APPL Seqno: 0 Price: 1623 a
3 1473411963 Symbol: APPL Seqno: 0 Price: 1623 a
4 1473411963 Symbol: APPL Seqno: 1 Price: 1649 a
# 将A列小写全变为大写(函数.apply(str.upper))
df['A'] = df['A'].apply(str.upper)
df
time data A
0 1473411962 Symbol: APPL Seqno: 0 Price: 1623 A
1 1473411962 Symbol: APPL Seqno: 0 Price: 1623 A
2 1473411963 Symbol: APPL Seqno: 0 Price: 1623 A
3 1473411963 Symbol: APPL Seqno: 0 Price: 1623 A
4 1473411963 Symbol: APPL Seqno: 1 Price: 1649 A
# 切分去除data数据
df['data'][0]
' Symbol: APPL Seqno: 0 Price: 1623'
# 去除头尾strip,且空格分割split
l1 = df['data'][0].strip().split(' ')
l1
['Symbol:', 'APPL', 'Seqno:', '0', 'Price:', '1623']
# 想要的是字典值
l1[1],l1[3],l1[5]
('APPL', '0', '1623')
# 写分割返回函数
def foo(line):
    items = line.strip().split(' ')
    return Series([items[1],items[3],items[5]])
# 分割完生成新的数框
df_tmp = df['data'].apply(foo)
df_tmp
0 1 2
0 APPL 0 1623
1 APPL 0 1623
2 APPL 0 1623
3 APPL 0 1623
4 APPL 1 1649
# 新的数框 重命名
df_tmp = df_tmp.rename(columns={0:'Symbol',1:'Seqno',2:'Price'})
df_tmp
Symbol Seqno Price
0 APPL 0 1623
1 APPL 0 1623
2 APPL 0 1623
3 APPL 0 1623
4 APPL 1 1649
df
time data A
0 1473411962 Symbol: APPL Seqno: 0 Price: 1623 A
1 1473411962 Symbol: APPL Seqno: 0 Price: 1623 A
2 1473411963 Symbol: APPL Seqno: 0 Price: 1623 A
3 1473411963 Symbol: APPL Seqno: 0 Price: 1623 A
4 1473411963 Symbol: APPL Seqno: 1 Price: 1649 A
# 新旧两个数框 结合
df_new = df.combine_first(df_tmp)
df_new
A Price Seqno Symbol data time
0 A 1623.0 0.0 APPL Symbol: APPL Seqno: 0 Price: 1623 1473411962
1 A 1623.0 0.0 APPL Symbol: APPL Seqno: 0 Price: 1623 1473411962
2 A 1623.0 0.0 APPL Symbol: APPL Seqno: 0 Price: 1623 1473411963
3 A 1623.0 0.0 APPL Symbol: APPL Seqno: 0 Price: 1623 1473411963
4 A 1649.0 1.0 APPL Symbol: APPL Seqno: 1 Price: 1649 1473411963
# 去掉多余已经处理的data
del df_new['data']
del df_new['A']
df_new
Price Seqno Symbol time
0 1623.0 0.0 APPL 1473411962
1 1623.0 0.0 APPL 1473411962
2 1623.0 0.0 APPL 1473411963
3 1623.0 0.0 APPL 1473411963
4 1649.0 1.0 APPL 1473411963
# 转存到外部继续用
df_new.to_csv('/Users/bennyrhys/Desktop/数据分析可视化-数据集/homework/demo_duplicate.csv')
!ls /Users/bennyrhys/Desktop/数据分析可视化-数据集/homework
AMZN.csv           apply_demo.csv     iris.csv           top5.csv
BABA.csv           city_weather.csv   movie_metadata.csv train.csv
Pokemon.csv        demo_duplicate.csv sales-funnel.xlsx  usa_flights.csv

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:【数据分析可视化】时间序列操作基础
下一篇:MS7200芯片简介 HDMI转数字RGB YUV 视频转换
相关文章

 发表评论

暂时没有评论,来抢沙发吧~