c语言sscanf函数的用法是什么
271
2022-11-23
【数据分析可视化】Concatenate和Combine
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
Concatenate
矩阵:Concatenate
Series和DataFrame:concat
# 创建矩阵
arr1 = np.arange(9).reshape(3,3)
arr1
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
# 创建矩阵
arr2 = np.arange(9).reshape(3,3)
arr2
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
# 链接两矩阵 默认竖着链接到下边
np.concatenate([arr1,arr1])
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
# 链接两矩阵 横向链接
np.concatenate([arr1,arr1],axis=1)
array([[0, 1, 2, 0, 1, 2],
[3, 4, 5, 3, 4, 5],
[6, 7, 8, 6, 7, 8]])
# 创建Series
s1 = Series([1,2,3],index=['x','y','z'])
s1
x 1
y 2
z 3
dtype: int64
# 创建Series
s2 = Series([4,5],index=['a','b'])
s2
a 4
b 5
dtype: int64
# concat 竖着连接
pd.concat([s1,s2])
x 1
y 2
z 3
a 4
b 5
dtype: int64
# concat 横着连接 (生成新的DataFrame)
pd.concat([s1,s2],axis=1)
/Users/bennyrhys/opt/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:2: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default.
To accept the future behavior, pass 'sort=False'.
To retain the current behavior and silence the warning, pass 'sort=True'.
0 | 1 | |
---|---|---|
a | NaN | 4.0 |
b | NaN | 5.0 |
x | 1.0 | NaN |
y | 2.0 | NaN |
z | 3.0 | NaN |
# 创建DataFrame
df1 = DataFrame(np.random.rand(4,3), columns=['x','y','z'])
df1
x | y | z | |
---|---|---|---|
0 | 0.118006 | 0.976428 | 0.286200 |
1 | 0.554356 | 0.739202 | 0.441234 |
2 | 0.987343 | 0.032884 | 0.963760 |
3 | 0.730118 | 0.617397 | 0.943546 |
# 创建DataFrame
df2 = DataFrame(np.random.randn(3,3), columns=['x','y','a'])
df2
x | y | a | |
---|---|---|---|
0 | 0.792735 | 0.927720 | 1.960326 |
1 | -1.015684 | 0.524749 | 1.002970 |
2 | -0.676568 | 0.378511 | 0.103341 |
# 连接 默认竖着
pd.concat([df1,df2])
/Users/bennyrhys/opt/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:2: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default.
To accept the future behavior, pass 'sort=False'.
To retain the current behavior and silence the warning, pass 'sort=True'.
a | x | y | z | |
---|---|---|---|---|
0 | NaN | 0.118006 | 0.976428 | 0.286200 |
1 | NaN | 0.554356 | 0.739202 | 0.441234 |
2 | NaN | 0.987343 | 0.032884 | 0.963760 |
3 | NaN | 0.730118 | 0.617397 | 0.943546 |
0 | 1.960326 | 0.792735 | 0.927720 | NaN |
1 | 1.002970 | -1.015684 | 0.524749 | NaN |
2 | 0.103341 | -0.676568 | 0.378511 | NaN |
combine_first特点
两组数据,当前一组nan时,后组填充。
合并后组比前组少的数据
s1 = Series([2,np.nan,4,np.nan], index=['A','B','C','D'])
s1
A 2.0
B NaN
C 4.0
D NaN
dtype: float64
s2 = Series([1,2,3,4], index=['A','B','C','D'])
s2
A 1
B 2
C 3
D 4
dtype: int64
# 后往前填充value值(当nan时后填充前)
s1.combine_first(s2)
A 2.0
B 2.0
C 4.0
D 4.0
dtype: float64
# 新建DataFrame
df1 = DataFrame({
'x':[1,np.nan,3,np.nan],
'y':[5,np.nan,7,np.nan],
'z':[9,np.nan,11,np.nan]
})
df1
x | y | z | |
---|---|---|---|
0 | 1.0 | 5.0 | 9.0 |
1 | NaN | NaN | NaN |
2 | 3.0 | 7.0 | 11.0 |
3 | NaN | NaN | NaN |
# 新建DataFrame
df2 = DataFrame({
'z':[np.nan,10,np.nan,12],
'a':[1,2,3,4]
})
df2
z | a | |
---|---|---|
0 | NaN | 1 |
1 | 10.0 | 2 |
2 | NaN | 3 |
3 | 12.0 | 4 |
df1.combine_first(df2)
a | x | y | z | |
---|---|---|---|---|
0 | 1.0 | 1.0 | 5.0 | 9.0 |
1 | 2.0 | NaN | NaN | 10.0 |
2 | 3.0 | 3.0 | 7.0 | 11.0 |
3 | 4.0 | NaN | NaN | 12.0 |
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~