【数据分析可视化】Concatenate和Combine

网友投稿 271 2022-11-23

【数据分析可视化】Concatenate和Combine

import numpy as np
import pandas as pd
from pandas import Series,DataFrame
Concatenate

矩阵:Concatenate
Series和DataFrame:concat

# 创建矩阵
arr1 = np.arange(9).reshape(3,3)
arr1
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
# 创建矩阵
arr2 = np.arange(9).reshape(3,3)
arr2
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
# 链接两矩阵 默认竖着链接到下边
np.concatenate([arr1,arr1])
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8],
       [0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
# 链接两矩阵 横向链接
np.concatenate([arr1,arr1],axis=1)
array([[0, 1, 2, 0, 1, 2],
       [3, 4, 5, 3, 4, 5],
       [6, 7, 8, 6, 7, 8]])
# 创建Series
s1 = Series([1,2,3],index=['x','y','z'])
s1
x    1
y    2
z    3
dtype: int64
# 创建Series
s2 = Series([4,5],index=['a','b'])
s2
a    4
b    5
dtype: int64
# concat 竖着连接
pd.concat([s1,s2])
x    1
y    2
z    3
a    4
b    5
dtype: int64
# concat 横着连接 (生成新的DataFrame)
pd.concat([s1,s2],axis=1)
/Users/bennyrhys/opt/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:2: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.

0 1
a NaN 4.0
b NaN 5.0
x 1.0 NaN
y 2.0 NaN
z 3.0 NaN
# 创建DataFrame
df1 = DataFrame(np.random.rand(4,3), columns=['x','y','z'])
df1
x y z
0 0.118006 0.976428 0.286200
1 0.554356 0.739202 0.441234
2 0.987343 0.032884 0.963760
3 0.730118 0.617397 0.943546
# 创建DataFrame
df2 = DataFrame(np.random.randn(3,3), columns=['x','y','a'])
df2
x y a
0 0.792735 0.927720 1.960326
1 -1.015684 0.524749 1.002970
2 -0.676568 0.378511 0.103341
# 连接 默认竖着
pd.concat([df1,df2])
/Users/bennyrhys/opt/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:2: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.

a x y z
0 NaN 0.118006 0.976428 0.286200
1 NaN 0.554356 0.739202 0.441234
2 NaN 0.987343 0.032884 0.963760
3 NaN 0.730118 0.617397 0.943546
0 1.960326 0.792735 0.927720 NaN
1 1.002970 -1.015684 0.524749 NaN
2 0.103341 -0.676568 0.378511 NaN
Combine

combine_first特点
两组数据,当前一组nan时,后组填充。
合并后组比前组少的数据

s1 = Series([2,np.nan,4,np.nan], index=['A','B','C','D'])
s1
A    2.0
B    NaN
C    4.0
D    NaN
dtype: float64
s2 = Series([1,2,3,4], index=['A','B','C','D'])
s2
A    1
B    2
C    3
D    4
dtype: int64
# 后往前填充value值(当nan时后填充前)
s1.combine_first(s2)
A    2.0
B    2.0
C    4.0
D    4.0
dtype: float64
# 新建DataFrame
df1 = DataFrame({
    'x':[1,np.nan,3,np.nan],
    'y':[5,np.nan,7,np.nan],
    'z':[9,np.nan,11,np.nan]
})
df1
x y z
0 1.0 5.0 9.0
1 NaN NaN NaN
2 3.0 7.0 11.0
3 NaN NaN NaN
# 新建DataFrame
df2 = DataFrame({
    'z':[np.nan,10,np.nan,12],
    'a':[1,2,3,4]
})
df2
z a
0 NaN 1
1 10.0 2
2 NaN 3
3 12.0 4
df1.combine_first(df2)
a x y z
0 1.0 1.0 5.0 9.0
1 2.0 NaN NaN 10.0
2 3.0 3.0 7.0 11.0
3 4.0 NaN NaN 12.0

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:常见的思科光模块型号大全
下一篇:入手固态硬盘不迷茫!这篇终极选购指南,你一定要看看
相关文章

 发表评论

暂时没有评论,来抢沙发吧~