【数据分析可视化】 DataFrame的merge操作

网友投稿 223 2022-11-23

【数据分析可视化】 DataFrame的merge操作

import numpy as np
import pandas as pd
from pandas import Series, DataFrame
# 通过字典,创建两个DataFrame
df1 = DataFrame({'data1':[1,2,3,4],'key':['a','b','c','a']})
df1
data1 key
0 1 a
1 2 b
2 3 c
3 4 a
df2 = DataFrame({'data2':[4,5,6],'key':['a','e','d']})
df2
data2 key
0 4 a
1 5 e
2 6 d
# 前提两个数框(必须有相同的列名-key相同的情况)
pd.merge(df1,df2) 
data1 key data2
0 1 a 4
1 4 a 4
# merge参数on (两组数据靠哪一列merge)
pd.merge(df1,df2, on='key')
data1 key data2
0 1 a 4
1 4 a 4
# merge参数on 
pd.merge(df1,df2, on=None)
data1 key data2
0 1 a 4
1 4 a 4
# 参数how(如何去merge) how='inner' 共有
pd.merge(df1,df2, on='key', how='inner')
data1 key data2
0 1 a 4
1 4 a 4
# 左边为准
pd.merge(df1,df2, on='key', how='left')
data1 key data2
0 1 a 4.0
1 2 b NaN
2 3 c NaN
3 4 a 4.0
# 右边为准
pd.merge(df1,df2, on='key', how='right')
data1 key data2
0 1.0 a 4
1 4.0 a 4
2 NaN e 5
3 NaN d 6
# 左右边为准
pd.merge(df1,df2, on='key', how='outer')
data1 key data2
0 1.0 a 4.0
1 4.0 a 4.0
2 2.0 b NaN
3 3.0 c NaN
4 NaN e 5.0
5 NaN d 6.0

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Java最简洁数据结构之冒泡排序快速理解
下一篇:常见的思科光模块型号大全
相关文章

 发表评论

暂时没有评论,来抢沙发吧~