c语言sscanf函数的用法是什么
239
2022-11-22
#yyds干货盘点#Hadoop企业级生产调优手册(二)
上节:Hadoop企业级生产调优手册(一)
五、HDFS存储优化
注:演示纠删码和异构存储需要一共 5 台虚拟机。尽量拿另外一套集群。提前准备 5 台服务器的集群。
5.1 纠删码
5.1.1 纠删码原理
[Tom@hadoop102 hadoop-3.1.3]$ hdfs ec
Usage: bin/hdfs ec [COMMAND]
[-listPolicies]
[-addPolicies -policyFile
查看当前支持的纠删码策略
[Tom@hadoop102 hadoop-3.1.3]$ hdfs ec -listPolicies Erasure Coding Policies: ErasureCodingPolicy=[Name=RS-10-4-1024k, Schema=[ECSchema=[Codec=rs, numDataUnits=10, numParityUnits=4]], CellSize=1048576, Id=5], State=DISABLED ErasureCodingPolicy=[Name=RS-3-2-1024k, Schema=[ECSchema=[Codec=rs, numDataUnits=3, numParityUnits=2]], CellSize=1048576, Id=2], State=DISABLED ErasureCodingPolicy=[Name=RS-6-3-1024k, Schema=[ECSchema=[Codec=rs, numDataUnits=6, numParityUnits=3]], CellSize=1048576, Id=1], State=ENABLED ErasureCodingPolicy=[Name=RS-LEGACY-6-3-1024k, Schema=[ECSchema=[Codec=rs-legacy, numDataUnits=6, numParityUnits=3]], CellSize=1048576, Id=3], State=DISABLED ErasureCodingPolicy=[Name=XOR-2-1-1024k, Schema=[ECSchema=[Codec=xor, numDataUnits=2, numParityUnits=1]], CellSize=1048576, Id=4], State=DISABLED
纠删码策略解释
(1)RS-3-2-1024k:使用 RS 编码,每 3 个数据单元,生成 2 个校验单元,共 5 个单元,也就是说:这 5 个单元中,只要有任意的 3 个单元存在(不管是数据单元还是校验单元,只要总数=3),就可以得到原始数据。每个单元的大小是 1024k=1024*1024=1048576。
(2)RS-10-4-1024k:使用 RS 编码,每 10 个数据单元( cell),生成 4 个校验单元,共 14 个单元,也就是说:这 14 个单元中,只要有任意的 10 个单元存在 (不管是数据单元还是校验单元,只要总数 =10),就可以得到原始数据。每个单元的大小是 1024k=1024*1024=1048576。
(3)RS-6-3-1024k:使用 RS 编码,每 6 个数据单元,生成 3 个校验单元,共 9 个单元,也就是说:这 9 个单元中,只要有任意的 6 个单元存在(不管是数据单元还是校验单元,只要总数 =6),就可以得到原始数据。每个单元的大小是 1024k=1024*1024=1048576。
(4)RS-LEGACY-6-3-1024k:策略和上面的 RS-6-3-1024k 一样,只是编码的算法用的是 rs-legacy。
(5)XOR-2-1-1024k:使用 XOR 编码(速度比 RS 编码快),每 2 个数据单元,生成 1 个校验单元,共 3 个单元,也就是说:这 3 个单元中,只要有任意的 2 个单元存在(不管是数据单元还是校验单元,只要总数 = 2),就可以得到原始数据。每个单元的大小是 1024k=1024*1024=1048576。
5.1.2 纠删码案例实操
需求:将 /input 目录设置为 RS-3-2-1024k 策略
具体步骤 (1)开启对 RS-3-2-1024k 策略的支持
[Tom@hadoop102 hadoop-3.1.3]$ hdfs ec -enablePolicy -policy RS-3-2-1024k Erasure coding policy RS-3-2-1024k is enabled
(2)在 HDFS 创建目录,并设置 RS-3-2-1024k 策略
[Tom@hadoop102 hadoop-3.1.3]$ hdfs dfs -mkdir /input [Tom@hadoop102 hadoop-3.1.3]$ hdfs ec -setPolicy -path /input -policy RS-3-2-1024k Set RS-3-2-1024k erasure coding policy on /input
(3)上传文件,并查看文件编码后的存储情况
[Tom@hadoop102 hadoop-3.1.3]$ hdfs dfs -put web.log /input
5.2 异构存储(冷热数据分离)
5.2.1 异构存储Shell操作
(1)查看当前有哪些存储策略可以用
[Tom@hadoop102 ~]$ hdfs storagepolicies -listPolicies Block Storage Policies: BlockStoragePolicy{PROVIDED:1, storageTypes=[PROVIDED, DISK], creationFallbacks=[PROVIDED, DISK], replicationFallbacks=[PROVIDED, DISK]} BlockStoragePolicy{COLD:2, storageTypes=[ARCHIVE], creationFallbacks=[], replicationFallbacks=[]} BlockStoragePolicy{WARM:5, storageTypes=[DISK, ARCHIVE], creationFallbacks=[DISK, ARCHIVE], replicationFallbacks=[DISK, ARCHIVE]} BlockStoragePolicy{HOT:7, storageTypes=[DISK], creationFallbacks=[], replicationFallbacks=[ARCHIVE]} BlockStoragePolicy{ONE_SSD:10, storageTypes=[SSD, DISK], creationFallbacks=[SSD, DISK], replicationFallbacks=[SSD, DISK]} BlockStoragePolicy{ALL_SSD:12, storageTypes=[SSD], creationFallbacks=[DISK], replicationFallbacks=[DISK]} BlockStoragePolicy{LAZY_PERSIST:15, storageTypes=[RAM_DISK, DISK], creationFallbacks=[DISK], replicationFallbacks=[DISK]}
(2)为指定路径 (数据存储目录) 设置指定的存储策略
hdfs storagepolicies -setStoragePolicy -path xxx -policy xxx
(3)获取指定路径(数据存储目录或文件)的存储策略
hdfs storagepolicies -getStoragePolicy -path xxx
(4)取消存储策略;执行改命令之后该目录或者文件,以其上级的目录为准,如果是根目录,那么就是 HOT
hdfs storagepolicies -unsetStoragePolicy -path xxx
(5)查看文件块的分布
bin/hdfs fsck xxx -files -blocks -locations
(6)查看集群节点
hadoop dfsadmin -report
5.2.2 测试环境准备
测试环境描述
服务器规模:5 台 集群配置:副本数为 2,创建好带有存储类型的目录(提前创建) 集群规划:
节点 | 存储类型分配 |
---|---|
hadoop102 | RAM_DISK,SSD |
hadoop103 | SSD,DISK |
hadoop104 | DISK,RAM_DISK |
hadoop105 | ARCHIVE |
hadoop106 | ARCHIVE |
配置文件信息
(1)为 hadoop102 节点的 hdfs-site.xml 添加如下信息
(2)为 hadoop103 节点的 hdfs-site.xml 添加如下信息
(3)为 hadoop104 节点的 hdfs-site.xml 添加如下信息
(4)为 hadoop105 节点的 hdfs-site.xml 添加如下信息
(5)为 hadoop106 节点的 hdfs-site.xml 添加如下信息
数据准备
(1)启动集群
[Tom@hadoop102 hadoop-3.1.3]$ hdfs namenode -format [Tom@hadoop102 hadoop-3.1.3]$ myhadoop.sh start
(2)在 HDFS 上创建文件目录
[Tom@hadoop102 hadoop-3.1.3]$ hadoop fs -mkdir /hdfsdata
(3)将文件资料上传
[Tom@hadoop102 hadoop-3.1.3]$ hadoop fs -put /opt/module/hadoop-3.1.3/NOTICE.txt /hdfsdata
5.2.3 HOT存储策略案例
(1)最开始我们未设置存储策略的情况下,我们获取该目录的存储策略
[Tom@hadoop102 hadoop-3.1.3]$ hdfs storagepolicies -getStoragePolicy -path /hdfsdata
(2)我们查看上传的文件块分布
[Tom@hadoop102 hadoop-3.1.3]$ hdfs fsck /hdfsdata-files -blocks -locations [DatanodeInfoWithStorage[192.168.10.104:9866,DS-0b133854-7f9e-48df-939b-5ca6482c5afb,DISK], DatanodeInfoWithStorage[192.168.10.103:9866,DS-ca1bd3b9-d9a5-4101-9f92-3da5f1baa28b,DISK]]
未设置存储策略,所有文件块都存储在 DISK 下。 所以, 默认存储策略为 HOT。
5.2.4 WARM存储策略测试
(1)接下来我们为数据降温
[Tom@hadoop102 hadoop-3.1.3]$ hdfs storagepolicies -setStoragePolicy -path /hdfsdata -policy WARM
(2)再次查看文件块分布,我们可以看到文件块依然放在原处。
[atguigu@hadoop102 hadoop-3.1.3]$ hdfs fsck /hdfsdata-files -blocks -locations
(3)我们需要让他 HDFS 按照存储策略自行移动文件块
[Tom@hadoop102 hadoop-3.1.3]$ hdfs mover /hdfsdata
(4)再次查看文件块分布
[Tom@hadoop102 hadoop-3.1.3]$ hdfs fsck /hdfsdata -files -blocks -locations [DatanodeInfoWithStorage[192.168.10.105:9866,DS-d46d08e1-80c6-4fca-b0a2-4a3dd7ec7459,ARCHIVE], DatanodeInfoWithStorage[192.168.10.103:9866,DS-ca1bd3b9-d9a5-4101-9f92-3da5f1baa28b,DISK]]
文件块一半在 DISK,一半在 ARCHIVE,符合我们设置的 WARM 策略
5.2.5 COLD策略测试
(1)我们继续将数据降温为 cold
[Tom@hadoop102 hadoop-3.1.3]$ hdfs storagepolicies -setStoragePolicy -path /hdfsdata -policy COLD
注意 :当我们将目录设置为 COLD 并且我们未配置 ARCHIVE 存储目录的情况下,不可以向该目录直接上传文件,会报出异常。
(2)手动转移
[Tom@hadoop102 hadoop-3.1.3]$ hdfs mover /hdfsdata
(3)检查文件块的分布
[Tom@hadoop102 hadoop-3.1.3]$ bin/hdfs fsck /hdfsdata -files -blocks -locations [DatanodeInfoWithStorage[192.168.10.105:9866,DS-d46d08e1-80c6-4fca-b0a2-4a3dd7ec7459,ARCHIVE], DatanodeInfoWithStorage[192.168.10.106:9866,DS-827b3f8b-84d7-47c6-8a14-0166096f919d,ARCHIVE]]
所有文件块都在 ARCHIVE,符合 COLD 存储策略。
5.2.6 ONE_SSD策略测试
(1)接下来我们将存储策略从默认的 HOT 更改为 One_SSD
[Tom@hadoop102 hadoop-3.1.3]$ hdfs storagepolicies -setStoragePolicy -path /hdfsdata -policy One_SSD
(2)手动转移文件块
[Tom@hadoop102 hadoop-3.1.3]$ hdfs mover /hdfsdata
(3)转移完成后,检查文件块的分布
[Tom@hadoop102 hadoop-3.1.3]$ bin/hdfs fsck /hdfsdata -files -blocks -locations [DatanodeInfoWithStorage[192.168.10.104:9866,DS-0b133854-7f9e-48df-939b-5ca6482c5afb,DISK], DatanodeInfoWithStorage[192.168.10.103:9866,DS-2481a204-59dd-46c0-9f87-ec4647ad429a,SSD]]
文件块分布为一半在 SSD,一半在 DISK,符合 One_SSD 存储策略。
5.2.7 ALL_SSD策略测试
(1)接下来我们将存储策略从默认的 HOT 更改为 All_SSD
[Tom@hadoop102 hadoop-3.1.3]$ hdfs storagepolicies -setStoragePolicy -path /hdfsdata -policy All_SSD
(2)手动转移文件块
[Tom@hadoop102 hadoop-3.1.3]$ hdfs mover /hdfsdata
(3)转移完成后,检查文件块的分布
[Tom@hadoop102 hadoop-3.1.3]$ bin/hdfs fsck /hdfsdata -files -blocks -locations [DatanodeInfoWithStorage[192.168.10.102:9866,DS-c997cfb4-16dc-4e69-a0c4-9411a1b0c1eb,SSD], DatanodeInfoWithStorage[192.168.10.103:9866,DS-2481a204-59dd-46c0-9f87-ec4647ad429a,SSD]]
所有的文件块都存储在 SSD,符合 All_SSD 存储策略。
5.2.8 LAZY_PERSIST策略测试
(1))继续改变策略,将存储策略改为 lazy_persist
[Tom@hadoop102 hadoop-3.1.3]$ hdfs storagepolicies -setStoragePolicy -path /hdfsdata -policy policy lazy_persist
(2)手动转移文件块
[Tom@hadoop102 hadoop-3.1.3]$ hdfs mover /hdfsdata
(3)转移完成后,检查文件块的分布
[Tom@hadoop102 hadoop-3.1.3]$ bin/hdfs fsck /hdfsdata -files -blocks -locations [DatanodeInfoWithStorage[192.168.10.104:9866,DS-0b133854-7f9e-48df-939b-5ca6482c5afb,DISK], DatanodeInfoWithStorage[192.168.10.103:9866,DS-ca1bd3b9-d9a5-4101-9f92-3da5f1baa28b,DISK]]
这里我们发现所有的文件块都是存储在 DISK,按照理论一个副本存储在 RAM_DISK,其他副本存储在 DISK 中,这是因为,我们还需要配置" dfs.datanode.max.locked.memory","dfs.block.size"参数。
那么出现存储策略为 LAZY_PERSIST 时,文件块副本都存储在 DISK 上的原因有如下两点: (1)当客户端所在的 DataNode 节点没有 RAM_DISK 时,则会写入客户端所在的 DataNode 节点的 DISK 磁盘,其余副本会写入其他节点的 DISK 磁盘。 (2)当客户端所在的 DataNode 有 RAM_DISK,但 dfs.datanode.max.locked.memory 参数值未设置或者设置过小(小于“ dfs.block.size”参数值)时,则会写入客户端所在的 DataNode 节点的 DISK 磁盘,其余副本会写入其他节点的 DISK 磁盘。
但是由于虚拟机的“max locked memory”为 64KB,所以,如果参数配置过大,还会报出错误:
ERROR org.apache .hadoop.hdfs.server.datanode.DataNode: Exception in secureMainjava.lang.RuntimeException: Cannot start datanode because the configured max locked memory size(dfs.datanode.max.locked.memory) of 209715200 bytes is more than the datanode's available RLIMIT_ MEMLOCK ulimit of 65536 bytes.
我们可以通过该命令查询此参数的内存
[Tom@hadoop102 hadoop-3.1.3]$ ulimit -a max locked memory (kbytes, -l) 64
六、HDFS故障排除
6.1 集群安全模式
安全模式:文件系统只接受读数据请求,而不接受删除、修改等变更请求
基本语法 集群处于安全模式,不能执行重要操作(写操作) 。 集群启动完成后,自动退出安全模式。
(1)bin/hdfs dfsadmin -safemode get(功能描述:查看安全模式状态) (2)bin/hdfs dfsadmin -safemode enter (功能描述:进入安全模式状态) (3)bin/hdfs dfsadmin -safemode leave(功能描述:离开安全模式状态) (4)bin/hdfs dfsadmin -safemode wait(功能描述:等待安全模式状态)
6.2 慢磁盘监控
“慢磁盘”指的时写入数据非常慢的一类磁盘。其实慢性磁盘并不少见,当机器运行时间长了,上面跑的任务多了,磁盘的读写性能自然会退化,严重时就会出现写入数据延时的问题。
如何发现慢磁盘?
正常在 HDFS 上创建一个目录,只需要不到 1s 的时间。如果你发现创建目录超过 1 分钟及以上,而且这个现象并不是每次都有。只是偶尔慢了一下,就很有可能存在慢磁盘。可以采用如下方法找出是哪块磁盘慢:
[Tom@hadoop102 ~]#sudo yum install -y fio [Tom@hadoop102 ~]# sudo fio -filename=/home/Tom/test.log -direct=1 -iodepth 1 -thread -rw=read -ioengine=psync-bs=16k -size=2G -numjobs=10 -runtime=60 -group_reporting -name=test_r Run status group 0 (all jobs): READ: bw=360MiB/s (378MB/s), 360MiB/s-360MiB/s (378MB/s-378MB/s), io=20.0GiB (21.5GB), run=56885-56885msec
结果显示,磁盘的总体顺序读速度为 360MiB/s
(2)顺序写测试
[Tom@hadoop102 ~]# sudofio -filename=/home/Tom/test.log -direct=1 -iodepth 1 -thread -rw=write -ioengine=psync -bs=16k -size=2G -numjobs=10 -runtime=60 -group_reporting -name=test_w Run status group 0 (all jobs): WRITE: bw=341MiB/s (357MB/s), 341MiB/s-341MiB/s (357MB/s-357MB/s), io=19.0GiB (21.4GB), run=60001-60001msec
结果显示,磁盘的总体顺序写速度为 341MiB/s
(3)随机写测试
[Tom@hadoop102 ~]#sudofio -filename=/home/Tom/test.log -direct=1 -iodepth 1 -thread -rw=randwrite -ioengine=psync-bs=16k -size=2G -numjobs=10 -runtime=60 -group_reporting -name=test_randw Run status group 0 (all jobs): WRITE: bw=309MiB/s (324MB/s), 309MiB/s-309MiB/s (324MB/s-324MB/s), io=18.1GiB (19.4GB), run=60001-60001msec
结果显示,磁盘的总体随机写速度为 309MiB/s。
(4)顺序读测试
[Tom@hadoop102 ~]# sudo fio -filename=/home/Tom/test.log -direct=1 -iodepth 1 -thread -rw=randrw -rwmixread=70 -ioengine=psync -bs=16k -size=2G -numjobs=10 -runtime=60 -group_reporting -name=test_r_w -ioscheduler=noop Run status group 0 (all jobs): READ: bw=220MiB/s(231MB/s), 220MiB/s-220MiB/s (231MB/s-231MB/s), io=12.9GiB (13.9GB), run=60001-60001msec WRITE: bw=94.6MiB/s (99.2MB/s), 94.6MiB/s-94.6MiB/s (99.2MB/s-99.2MB/s), io=5674MiB (5950MB), run=60001-60001msec
结果显示,磁盘的总体混合随机读写 ,读速度为 220MiB/s,写速度 94.6MiB/s。
6.3 小文件归档
[Tom@hadoop102 hadoop 3 1 3 ]$ start-yarn.sh
(2)归档文件 把 /input 目录里面的所有文件归档成一个叫 input.har 的归档文件,并把归档 后文件存储到 /output 路径下。
[Tom@hadoop102 hadoop-3.1.3]$ hadoop archive -archiveName input.har -p /input /output
(3)查看文档
[Tom@hadoop102 hadoop-3.1.3]$ hadoop fs -ls /output/input.har Found 4 items -rw-r--r-- 3 Tom supergroup 0 2021-06-26 17:26 /output/input.har/_SUCCESS -rw-r--r-- 3 Tom supergroup 268 2021-06-26 17:26 /output/input.har/_index -rw-r--r-- 3 Tom supergroup 23 2021-06-26 17:26 /output/input.har/_masterindex -rw-r--r-- 3 Tom supergroup 74 2021-06-26 17:26 /output/input.har/part-0 [Tom@hadoop102 hadoop-3.1.3]$ hadoop fs -ls har:///output/input.har 2021-06-26 17:33:50,362 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false Found 3 items -rw-r--r-- 3 Tom supergroup 38 2021-06-26 17:24 har:///output/input.har/shu.txt -rw-r--r-- 3 Tom supergroup 19 2021-06-26 17:24 har:///output/input.har/wei.txt -rw-r--r-- 3 Tom supergroup 17 2021-06-26 17:24 har:///output/input.har/wu.txt
(4)解归档文件
[Tom@hadoop102 hadoop-3.1.3]$ hadoop fs -cp har:///output/input.har/* /
七、MapReduce生产经验
MapReduce 跑的慢的原因 (1)计算机性能:CPU、内存、磁盘、网络 (2)I/O 操作优化:数据倾斜;Map 运行时间太长,导致 Reduce 等待过久;小文件过多
减少数据倾斜的方法: (1)首先检查是否空值过多造成的数据倾斜。生产环境,可以直接过滤掉空值;如果想保留空值,就自定义分区,将空值加随机数打散。最后再二次聚合 。 (2)能在 map 阶段提前处理,最好先在 Map 阶段处理。如: Combiner、 MapJoin (3)设置多个 reduce 个数
八、Hadoop综合调优
8.1 Hadoop小文件优化方法
8.1.1 Hadoop小文件弊端
HDFS 上每个文件都要在 NameNode 上创建对应的元数据,这个元数据的大小约为 150byte,这样当小文件比较多的时候,就会产生很多的元数据文件 一方面会大量占用 NameNode 的内存空间 另一方面就是元数据文件过多,使得寻址索引速度变慢。 小文件过多,在进行 MR 计算时,会生成过多切片,需要启动过多的 MapTask。每个 MapTask 处理的数据量小, 导致 MapTask 的处理时间比启动时间还小,白白消耗资源。
8.1.2 Hadoop小文件解决方案
1)在数据采集的时候,就将小文件或小批数据合成大文件再上传 HDFS(数据源头)
2)Hadoop Archive(存储方向) 是一个高效的将小文件放入 HDFS 块中的文件存档工具,能够将多个小文件打包成一个 HAR 文件,从而达到减少 NameNode 的内存使用。
3)CombineTextInputFormat(计算方向) CombineTextInputFormat 用于将多个小文件在切片过程中生成一个单独的切片或者少量的切片。
4)开启 uber 模式,实现 JVM 重用 (计算方向) 默认情况下,每个 Task 任务都需要启动一个 JVM 来运行,如果 Task 任务计算的数据量很小,我们可以让同一个 Job 的多个 Task 运行在一个 JVM 中,不必为每个 Task 都开启一个 JVM。 (1)未开启 uber 模式,在 /input 路径上上传多个小文件 并执行 wordcount 程序
[Tom@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /input /output2
(2)观察控制台
2021-06-26 16:18:07,607 INFO mapreduce.Job: Job job_1613281510851_0002 running in uber mode : false
(5)分发配置
[Tom@hadoop102 hadoop]$ xsync mapred-site.xml
(6)再次执行 wordcount 程序
[Tom@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /input /output2
(7)观察控制台
2021-06-27 16:28:36,198 INFO mapreduce.Job: Job job_1613281510851_0003 running in uber mode : true
8.2 测试MapReduce计算性能
使用 Sort 程序评测 MapReduce 注:一个虚拟机不超过 150G 磁盘尽量不要执行这段代码
(1)使用 RandomWriter 来产生随机数,每个节点运行 10 个 Map 任务,每个 Map 产生大约 1G 大小的二进制随机数
[Tom@hadoop102 mapreduce]$ hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar randomwriter random-data
(2)执行 Sort 程序
[Tom@hadoop102 mapreduce]$ hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar sortrandom-data sorted-data
(3)验证数据是否真正排好序了
[Tom@hadoop102 mapreduce]$ hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-3.1.3-tests.jar testmapredsort -sortInput random-data -sortOutput sorted-data
8.3 企业开发场景案例
8.3.1 需求
(1)需求:从 1G 数据中,统计每个单词出现次数。服务器 3 台,每台配置 4G 内存,4 核 CPU,4 线程。 (2)需求分析: 1G/128m=8个MapTask;1个ReduceTask;1个mrAppMaster,平均每个节点运行 10个/3台≈3个任务(4 3 3)
8.3.2 HDFS参数调优
(1)修改 hadoop-env.sh
export HDFS_NAMENODE_OPTS="-Dhadoop.security.logger=INFO,RFAS-Xmx1024m" export HDFS_DATANODE_OPTS="-Dhadoop.security.logger=ERROR,RFAS-Xmx1024m"
(2)修改 hdfs-site.xml
(3)修改 core-site.xml
(4)分发配置
[Tom@hadoop102 hadoop]$ xsync hadoop-env.sh hdfs-site.xml core-site.xml
8.3.3 MapReduce参数调优
(1)修改 mapred-site.xml
(2)分发配置
[Tom@hadoop102 hadoop]$ xsync mapred-site.xml
8.3.4 Yarn参数调优
(1)修改 yarn-site.xml 配置参数如下:
(2)分发配置
[Tom@hadoop102 hadoop]$ xsync yarn-site.xml
8.3.5 执行程序
(1)重启集群
[Tom@hadoop102 hadoop-3.1.3]$ sbin/stop-yarn.sh [Tom@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh
(2)执行 WordCount 程序
[Tom@hadoop102 hadoop 3.1.3]$ hadoop jar share/hadoop/ mapreduce/hadoop mapreduce examples 3.1.3.jar wordcount /input /output
(3)观察 Yarn 任务执行页面 http://hadoop103:8088/cluster/apps
参考文档:
美团数据平台及数仓建设实践,超十万字总结 上百本优质大数据书籍,附必读清单(大数据宝藏) 五万字 | 耗时一个月整理出这份Hadoop吐血宝典
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~