可支持电阻温度检测器的高精度接口

网友投稿 224 2022-11-22

可支持电阻温度检测器的高精度接口

---电阻温度检测器电阻RRTD= (100 + 0.39083T-0.00005775T2)Ω (1)

---图1的电路最适宜采用4引线白金电阻温度检测器,目前采用的众多配置之中也以这款设计最为准确。4引线白金电阻温度检测器设有Kelvin连接动力引线及传感引线。图1中的W1及W4这两条引线属于动力引线,负责将电阻温度检测器连接到恒流电源。另外两条引线W2及W3属于传感引线,负责将电阻温度检测器的电压连接到放大器。这个设计可将负责驱动电阻温度检测器的恒流电源与测量电路分开,其优点是,测量电阻温度检测器的电压时,即使W1和W4引线出现压降也不会影响测量数字的准确性。

---下面解释为何引线会造成测量上出现误差。假若探头采用3m长的24级铜线,而这条导线将电阻与测量仪表连接一起,那么引线的电阻可以用下式计算出来:2×3m×(0.0857Ω/m) = 0.514Ω。若温度为0℃时,电阻温度检测器的电阻会按照0.39Ω/℃这个升降率而转变,令引线产生以下的温度误差:0.514Ω/(0.39Ω/℃)=1.31℃。温度越高,误差也就越大。若温度为400℃,白金电阻温度检测器的电阻会按照0.35Ω/℃这个升降率而转变,令引线产生以下的温度误差:0.514Ω/(0.35Ω/℃)=1.46℃。

可以激励电阻温度检测器的其他电路

---图3的电路采用恒流电源。只要引线压降、白金电阻温度检测器及R8电阻所产生的总电压不超过A1放大器的最高输出摆幅,1mA的电流便会流入白金电阻温度检测器。传感引线W2及W3的电压可以用式3计算出来。

---VPRTD=0.001×RPRTD (3)

---图4利用图表方式比较这两种不同电路设计的性能。曲线1是输出恒流驱动电流的VPRTD,而曲线2则是输出恒压驱动电流的VPRTD。由于分压器的关系,恒压驱动电流的线性表现会受到一定的影响,以致其实际表现会增添一些非线性的特性。

恒流激励器

---恒流电源供应器由放大器1(即LMP2011高精度放大器)、R8电阻及2.5V LM4140参考电路组成。恒流值可以用公式4计算出来。

---IRTD= Vref/R8 (4)

---若要确保R8电阻能够充分发挥其性能,可以采用已封装微调的薄膜电阻阵列,例如,可以先将4个10kΩ电阻并行连接一起,然后装载在同一封装内,组装成一个准确的2.5kΩ电阻。

信号放大器

---A2、A3和A4三个放大器可以组装一起,成为仪表测量放大器。以这一电路为例来说,应用的温度范围是0~700℃,因此这个温度范围之内的电阻便应该介于100~345.28Ω之间。若输入电流为1mA,传感引线的电压会在0.10~0.34528V的范围内波动。再假设LM4140A-2.500电压参考电路也为模拟/数字转换器提供电压参考,而白金电阻温度检测器的信号则调高至其满标度的2.5V,那么仪表测量放大器必须提供的增益则等于2.500/0.34528=7.2405。仪表测量放大器的整体增益可以用公式5计算出来,但必须受R3=R1、R4=R2及R6=R5这三个前提限制。

---Av=(1+2R5/R7)(R1/R2) (5)

---由于要求的增益较低,因此所有增益都来自第一级放大器,而且这方面的增益可以利用R7的电阻值加以控制。由于增益可以加以设定,因此其他电阻也必须采用相同的电阻值。R1、R2、R3、R4、R5及R6等电阻的电阻值应互相参照调校,以便尽量缩小彼此的差距。这些电阻最适宜用来组装微调薄膜电阻组,其优点是各电阻在有需要时可以加以互相参照调校,确保彼此的差值不会超过0.01%。R7的电阻值可以用公式6计算出来。

---7.2405=(1+2(10kΩ)/R7)(10kΩ/10kΩ) (6)

---这里,R1、R2和R5均为10kΩ,计算得出R7=3.2049kΩ。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:#yyds干货盘点# Hadoop序列化详解及代码实操
下一篇:#yyds干货盘点# Hadoop之MapReduce入门概述
相关文章

 发表评论

暂时没有评论,来抢沙发吧~