c语言sscanf函数的用法是什么
306
2022-11-21
GDDR6存储器接口的设计方法介绍
您是某个OEM系统公司的片上系统(SoC)或系统设计师吗?你的绘图板上是否有GDDR6呢?
内存接口
图1:存储器接口通道
控制器BGA封装采用倒装芯片球栅阵列(FC-BGA)封装,因其具有高引脚密度和优越的供电网络寄生效应。高引脚密度的实现源于引脚以低至0.4mm的间距排布在区域阵列中。
图2:4-2-4封装的横截面
GDDR6存储器子系统采用单端信号以16至20千兆位/秒(Gbps)的高数据速率传输数据。 高数据速率下的信号完整性受导体和电介质的材料特性影响。FC-BGA中的介电材料,继而PCB中的介电材料,会吸收来自信号传输线的磁能导致接收器处的信号强度降低。
信号损耗
在控制器封装中,可以通过更小尺寸的封装来实现更短的通道长度。在PCB中,将DRAM封装尽可能靠近控制器封装可以实现降低通道长度。由于大多数汽车和消费类PCB系统的限制,通常可以将PCB通道限制在30mm和60mm之间。
低损耗介电材料可用于封装和PCB。对于封装,可以使用Ajinomoto积层膜(ABF)薄膜电介质,其介电损耗低至0.0044。对于PCB,可以使用Megtron6,介电损耗低至0.002。使用低损耗材料是减少通道插入损耗的有效方法。
趋肤效应
高速信号倾向于在导体表面传播,这种现象也称为趋肤效应。在FC-BGA封装中,导体和电介质之间的界面通常不是非常光滑,表面粗糙将导致更高数据速率传输时的信号插入损耗增大。
由于制造工艺的限制,例如通孔的钻孔尺寸和BGA球尺寸,使得由于通孔、C4凸块和BGA球引起的阻抗不连续性难以控制。通常情况下可以将信号走线阻抗与接收器和驱动器阻抗相匹配,将回波损耗降至最低以改善插入损耗。
PCB采用镀通孔设计还可能由于过孔引线的存在而导致信号插入损耗显著退化,此时可能需要通过背钻的方式移除多余的引线或在PCB中使用盲孔或埋孔。
串扰
在封装衬底中,当信号迹线在同一层上彼此非常靠近或者当通过内核的信号通孔彼此非常靠近时会产生串扰。因此,增大“攻击者”和“受害者”信号之间的间距是显而易见的解决方案。
但是,如果没有充分规划信号、ASIC管芯凸点、BGA引脚和衬底中的通孔的布局,加大间距也可能并不有效。为了最小化通孔串扰,可能需要重新布置BGA引脚,以便在多个干扰源信号和被干扰信号之间布置接地或电源引脚(返回路径)。
由于通孔彼此太靠近,细间距BGA封装可能会产生额外的串扰。此时就需要规划封装衬底上的迹线布线以管理布线密度,而且可能还需要额外的布线层。
在PCB上,BGA引脚下的导通孔会显著增加串扰。重新排列BGA引脚以增加适当的隔离和返回路径将有助于减少串扰。对导通孔进行背钻也可以减少BGA封装下方通孔的信号耦合。此外,使用盲孔和埋孔也是减少串扰的方法。
结论
本文探讨了几个设计考量和方法用以缓解GDDR6 DRAM实施所带来的挑战。特别指出了在整个接口通道保持信号完整性的重要性。必须特别重视GDDR6存储器接口设计的每个阶段,才能够成功解决信号完整性问题。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~