关于逆变器在智能电网接口中的应用详细讲解教程

网友投稿 290 2022-11-20

关于逆变器在智能电网接口中的应用详细讲解教程

图1 逆变器作为ECSs和电网间的柔性多功能基本连接

1逆变器接入电网的要求

今天,DERs和RESs所使用的逆变器仍然主要采用了被动控制技术。这意味着对电网接入功率的控制与通过一次能源产生电能的能量转换系统密切相关。对电网侧来说,它们相当于负的负载。它们将从ECS处获得的全部功率注入电网。在这种方式下,电网侧的电网控制整合,甚至于主动参与控制和稳定电网状态变量都是不可能的。

为了增加DERs和RESs在电网中的比例,规章制度还应该进行更深入的变革。分布式发电单元必须与集中式电源承担同样的基础调控任务。只有这样电网才能被激励者运行在分布形式下。未来的电力系统不仅仅要求DERs和RESs承担假定的预防性的措施和开环控制。这些电源必须执行物理上的实际的电力系统调控。只有这样,未来集中式电源才能被DERs和RESs取代或者补充。

2常规电力系统控制方法在逆变器系统中的采用

新的DERs和RESs必须参与到现有的系统中并适应现有的结构和控制策略。因此逆变器必须适应现有的电网控制并且遵从基本原则,尤其是在相互连接的运行中。基本的逆变器控制必须以传统发电控制方式为基础,并被分类如图2所示。

图2 逆变器连接到电网侧的馈电方式

当接入电网的构件是DERs或RESs时,常规的基础控制方式可以被逆变器采用和执行。向电网传输的功率可以被ECS或电网驱动。

在ECS驱动馈电时,ECS决定了向电网传输的功率。如今,单台RESs逆变器典型地就在这种馈电方式下运行,并向电网注入全部可提供的功率。在电网驱动馈电时,不再是ECS,而是电网决定功率的传输。典型的,大多数常规大型电厂运行在这种方式下,同样,这种方式潜在的适合DERs和RESs系统,或者至少适合混合式电力系统。在ECS驱动馈电的情况下,逆变器控制方式被称作电网平行方式。第二种情况可以被两种不同的逆变器控制方式实现,分别是电网形成方式和电网支持方式。电网形成方式中逆变器的作用是建立和维持电网状态变量。电网支持方式中逆变器被用于平衡功率。它可以传输预先设定数量的功率,这个数量可以根据电力系统的需要或者高级控制运行得到的参考值进行调整。应用这个控制方式的逆变器例子如图3至图5的左侧所示。此外,这些基本有功功率调控器潜在的对二次电网控制的相互联系可以被类似的阐释。

图3 主动控制并与电网连接的逆变器的电网形成(GF)控制方式

图4 主动控制并与电网连接的逆变器的电网支持(GS)控制方式

图5 被动控制逆变器的电网平行(GP)控制方式

3仿真研究

图6 两个微型电网,每一个包含一个电网形成方式逆变器和一个电网支持方式逆变器

图7描述了逆变器的有功功率。最初,每个电网形成方式的逆变器都提供10kW功率,电网支持方式的逆变器都提供6kW功率。于是,两个电网形成方式的逆变器和两个电网支持方式的逆变器平均分摊负载功率。15s时,4.2kW的负载阶跃功率被加到第一个电网上。随着负载改变,所有的逆变器都马上做出了反应,功率的产生和消耗被重新分配。

图7 (a)逆变器有功功率 (b)逆变器无功功率

一段时间后,二次控制器控制逆变器动作,第一个电网上的阶跃负载只由第一个电网上的逆变器补偿。交换功率受到控制重新回到之前的设定值。不同逆变器的无功功率如图7b所示。开始时,所有逆变器提供的无功功率都近似为14.6kvar。15s的时候,第一个电网的无功功率增加了70var。正如前面提到的,本次仿真并没有对无功功率进行二次控制。电网形成方式的逆变器补偿增加的阶跃负载,电网支持方式的逆变器提供相同数量的无功功率。

电力系统的频率如图8所示。由于一次和二次控制都影响电网频率,但是影响是在不同的时间尺度,快速控制器的反应如放大窗口所示。

图8 电力系统频率

图9 (a) t=15s时加入阶跃负载的GF1三相电压 (b) t=15s时加入阶跃负载的GF1三相电流

由于15s加入了阶跃负载,频率的降落由下垂控制功能决定。当一次控制迅速稳定频率后,二次控制相对缓慢的将频率调回50Hz。

第一个电网形成方式的逆变器在连接点处的电压和电流如图9所示。逆变器电压几乎不受干扰,与此同时,只有电流去适应相关负载情况。

图10以第一个电网负载的三相电压和三相电流为例来说明负载电压电流质量和控制性能。15s时,负载阶跃加入电网。负载电压几乎保持不变,与此同时电流随着阶跃负载增加。

图10 (a) t=15s时加入阶跃负载的负载三相电压

4试验实现

验证前面介绍的标准化逆变器控制方式的第二部,是在充分的硬件平台进行测试。三种方式的控制结构在对称和不对称条件下都得到了实现。图11展示了孤岛或相互连接运行状态下的逆变器模块的执行情况。图12展示了类似的不对称电网形成方式的测试情况。受到本文的局限性,进一步的测试结果将在后续的论文中发表。

图11 逆变器模块平台和实验测试设备

图12 不对称电网形成方式执行情况:不对称阻感负载阶跃下测得的相电压和相电流

目前电力系统仍然基于常规电厂高压运行的集中控制方式。随着被动控制的DERs和RESs的不断接入,可控电能的比率会逐渐减少。电力系统控制的激励变量的受限会危害系统的运行稳定性。为了在未来实现电力系统的可靠控制,DERs和RESs必须被授权可以积极参与电网状态变量频率和电压的调控。

新的DERs和RESs在详细的基本运行原则的指导方针下正在逐步加入到现已存在的系统中。为了参与到这个控制系统中,现有的常规控制策略必须作出调整。作为电网连接的逆变器的控制策略必须基于标准的常规电厂馈电方式。根据推荐的策略,DERs和RESs可以活跃的参与到电力系统的物理控制中。仿真研究表明,当相互连接的微电网中,只有基于推荐控制方式的逆变器时,电网仍然可以运行。这种控制策略已经在实验室的逆变器装置上被成功的验证。推荐的控制策略标准的应用只是为DERS和RESs建立与常规电力设备平等条件和能源供应在物理层面和技术层面自由化的第一步。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:#yyds干货盘点#hadoop机架感知
下一篇:写给互联网人35岁之后的建议
相关文章

 发表评论

暂时没有评论,来抢沙发吧~