Hadoop——分布式文件管理系统HDFS

网友投稿 304 2022-11-19

Hadoop——分布式文件管理系统HDFS

一、HDFS概述

1、产生背景

随着数据量越来越大,在一个操作系统管辖的范围内存不下了,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统。HDFS只是分布式文件管理系统中的一种。

2、概念

HDFS(Hadoop Distributed File System),它是一个文件系统,用于存储文件,通过目录树来定位文件;其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。

HDFS的设计适合一次写入,多次读出的场景,且不支持文件的修改。适合用来做数据分析,并不适合用来做网盘应用。

3、优缺点

优点:

1)高容错性

(1)数据自动保存多个副本。它通过增加副本的形式,提高容错性;

(2)某一个副本丢失以后,它可以自动恢复。

2)适合大数据处理

(1)数据规模:能够处理数据规模达到GB、TB甚至PB级别的数据;

(2)文件规模:能够处理百万规模以上的文件数量,数量相当之大。

3)流式数据访问,它能保证数据的一致性。

4)可构建在廉价机器上,通过多副本机制,提高可靠性。

缺点:

1)不适合低延时数据访问,比如毫秒级的存储数据,是做不到的。

2)无法高效的对大量小文件进行存储。

(1)存储大量小文件的话,它会占用 NameNode大量的内存来存储文件、目录和块信息。这样是不可取的,因为NameNode的内存总是有限的;

(2)小文件存储的寻址时间会超过读取时间,它违反了HDFS的设计目标。

3)不支持并发写入、文件随机修改。

(1)一个文件只能有一个写,不允许多个线程同时写;

(2)仅支持数据append(追加),不支持文件的随机修改。

4、HDFS组成架构(重点)

这种架构主要由四个部分组成,分别为HDFS Client、NameNode、DataNode和Secondary NameNode。下面我们分别介绍这四个组成部分。

1)Client:就是客户端。

(1)文件切分。文件上传HDFS的时候,Client将文件切分成一个一个的Block,然后进行存储;

(2)与NameNode交互,获取文件的位置信息;

(3)与DataNode交互,读取或者写入数据;

(4)Client提供一些命令来管理HDFS,比如启动或者关闭HDFS;

(5)Client可以通过一些命令来访问HDFS;

2)NameNode:就是Master,它是一个主管、管理者。

(1)管理HDFS的名称空间;

(2)管理数据块(Block)映射信息;

(3)配置副本策略;

(4)处理客户端读写请求。

3)DataNode:就是Slave。NameNode下达命令,DataNode执行实际的操作。

(1)存储实际的数据块;

(2)执行数据块的读/写操作。

4)Secondary NameNode:并非NameNode的热备。当NameNode挂掉的时候,它并不能马上替换NameNode并提供服务。

(1)辅助NameNode,分担其工作量;

(2)定期合并Fsimage和Edits,并推送给NameNode;

(3)在紧急情况下,可辅助恢复NameNode。

​​NameNode、Secondary NameNode、DataNode工作机制详解​​

二、HDFS数据流

1、HDFS的写数据流程

步骤:

1)客户端通过Distributed FileSystem模块向NameNode请求上传文件,NameNode检查目标文件是否已存在,父目录是否存在。

2)NameNode返回是否可以上传。

3)客户端请求第一个 block上传到哪几个datanode服务器上。

4)NameNode返回3个datanode节点,分别为dn1、dn2、dn3。

5)客户端通过FSDataOutputStream模块请求dn1上传数据,dn1收到请求会继续调用dn2,然后dn2调用dn3,将这个通信管道建立完成。

6)dn1、dn2、dn3逐级应答客户端。

7)客户端开始往dn1上传第一个block(先从磁盘读取数据放到一个本地内存缓存),以packet为单位,dn1收到一个packet就会传给dn2,dn2传给dn3;dn1每传一个packet会放入一个应答队列等待应答。

8)当一个block传输完成之后,客户端再次请求NameNode上传第二个block的服务器。(重复执行3-7步)。

网络拓扑概念

在本地网络中,两个节点被称为“彼此近邻”是什么意思?在海量数据处理中,其主要限制因素是节点之间数据的传输速率——带宽很稀缺。这里的想法是将两个节点间的带宽作为距离的衡量标准。

节点距离:两个节点到达最近的共同祖先的距离总和。

例如,假设有数据中心d1机架r1中的节点n1。该节点可以表示为/d1/r1/n1。利用这种标记,这里给出四种距离描述,如上图

机架感知

(1)​​官方ip地址​​

(2)低版本Hadoop副本节点选择

第一个副本在Client所处的节点上。如果客户端在集群外,随机选一个。

第二个副本和第一个副本位于不相同机架的随机节点上。

第三个副本和第二个副本位于相同机架,节点随机。

(3)Hadoop2.7.2副本节点选择

第一个副本在Client所处的节点上。如果客户端在集群外,随机选一个。

第二个副本和第一个副本位于相同机架,随机节点。

第三个副本位于不同机架,随机节点。

2、HDFS的读数据流程

步骤:

1)客户端通过Distributed FileSystem向NameNode请求下载文件,NameNode通过查询元数据,找到文件块所在的DataNode地址。

2)挑选一台DataNode(就近原则,然后随机)服务器,请求读取数据。

3)DataNode开始传输数据给客户端(从磁盘里面读取数据输入流,以packet为单位来做校验)。

4)客户端以packet为单位接收,先在本地缓存,然后写入目标文件。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:低功耗控制器与高DC电压的接口连接
下一篇:Hadoop——分布式计算框架MapReduce实践案例
相关文章

 发表评论

暂时没有评论,来抢沙发吧~