linux怎么查看本机内存大小
351
2022-11-18
基于FPGA图像处理的视频流实时处理系统
第一部分 设计概述
1.1 设计目的
1.2 应用领域
本设计可用于手持摄像系统(摄像机、智能手机)图像、视频流的 HDR 处 理,可用于低照度情况下固定监控系统的视频流 HDR 处理,可用于线上直播系统的视频流 HDR 处理。
1.3 主要技术特点
采用自适应白平衡及色调映射策略,在低光照情况下最大程度还原了景物的 色彩;在保证较高信噪比的情况下,提高了主要景物的亮度。
1.4 关键性能指标
图像融合处理时间、视频流处理延时;
图像信噪比、色彩还原度、细节清晰度、纹理清晰度(人眼观察)。
1.5 主要创新点
(1) 低照度高动态图像处理;
(2) 层次化的图像配准;
(3) 有权重的图像融合降噪;
(4) 自适应白平衡与色调映射策略;
(5) FPGA 硬件加速;
(6) 低时延视频流处理。
第二部分 系统组成及功能说明
2.1 整体介绍
我们调用了 PYNQ-Z2 自有的 HDMI Overlay 进行处理流程及结果的显示。此外,PYNQ-Z2 为我们提供了丰富的存储单元、外设模块与通信接口。这些存储单元被用来存储图像数据及各类处理中间结果,而各类外设模块及通信接口则 被用来进行系统调试与控制的过程监控。
均值下采样与高斯下采样处理被封装在名为 DownSample 的 IP core 中,层次化图像配准处理被封装在名为 Alignment 的 IP core 中,图像融合处理被封装在名为 Merge 的 IP core 中,去马赛克、白平衡、色调映射等处理被封装在名为 raw2rgb 的 IP core 中。这些 IP cores 挂载到 AXI 总线上,经封装为 Overlay 提供 Python API 给 PYNQ-Z2 的 Jupyter-Notebook。
2.2 各模块介绍
下采样模块(DownSample)
下采样模块为后续的层次化图像配准处理提供四层高斯图像金字塔。四层高斯金字塔的最底层为全分辨率的拜耳原始图像(我们称该层为 layer_raw),其像素点以拜耳阵列的形式排布,如下图所示。
我们首先进行系数 2 的均值下采样,直观上将一个 2*2 像素的“方格”取均值下采样为一个像素。下采样后的结果类似于一个单通道的灰度图像,但实际上绿色通道对下采样后的结果影响较大。我们称该层为 layer_0。
layer_0 随后进行两次系数 4 的高斯下采样。卷积核函数见附录。该卷积核 函数的大小为 5*5 像素,以 4 像素为步长在被采样的图像上以后,对该图像进行下采样。高斯下采样的结果将在一定程度上保留了采样前图像的低频信息,而图 像细节则被丢失。直观上图像的大致轮廓被保留,图像尺寸更小,细节模糊不清。两次高斯下采样的结果分为称之为 layer_1 与 layer_2。
经下采样模块处理后的结果可以用下图说明。
图像配准模块(Alignment)
式中的求和对一个图块内的所有像素进行,配准的目的是对参考帧中的每一个图 块,寻找其在每一个备选帧中的对应图块,使得上式的结果最小。此时两个图块 的坐标偏移量即为配准结果。
在保证图像间偏差不大的前提下,图块配准的搜索范围可以限定图块原始位 置周围的若干像素内。为了进一步提高配准的效率,我们采用层次化的配准方案:在上层低分辨率图像中进行预配准,配准结果将作为下层图像配准的预偏移 (Previous Offset)。各层图像以图块为基本单位,在预偏移的基础上进行小范围的配准。由此,上述残差计算式可以重新表达如下。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~