Spark SQL配置及使用教程

网友投稿 354 2022-11-17

Spark SQL配置及使用教程

目录SparkSQL版本:SparkSQL DSL语法SparkSQL和Hive的集成Spark应用依赖第三方jar包文件解决方案 SparkSQL的ThriftServer服务SparkSQL的ThriftServer服务测试Spark中beeline的使用通过jdbc来访问spark的ThriftServer接口SparkSQL案例案例一:SparkSQL读取HDFS上json格式的文件案例二:DataFrame和Dataset和RDD之间的互相转换SparkSQL的函数

XY个人记

SparkSQL是spark的一个模块,主入口是SparkSession,将SQL查询与Spark程序无缝混合。DataFrames和SQL提供了访问各种数据源(通过JDBC或ODBC连接)的常用方法包括Hive,Avro,Parquet,ORC,JSON和JDBC。您甚至可以跨这些来源加入数据。以相同方式连接到任何数据源。Spark SQL还支持HiveQL语法以及Hive SerDes和UDF,允许您访问现有的Hive仓库。

Spark SQL包括基于成本的优化器,列式存储和代码生成,以快速进行查询。同时,它使用Spark引擎扩展到数千个节点和多小时查询,该引擎提供完整的中间查询容错。不要担心使用不同的引擎来获取历史数据。

SparkSQL版本:

Spark2.0之前

入口:SQLContext和HiveContext

SQLContext:主要DataFrame的构建以及DataFrame的执行,SQLContext指的是spark中SQL模块的程序入口

HiveContext:是SQLContext的子类,专门用于与Hive的集成,比如读取Hive的元数据,数据存储到Hive表、Hive的窗口分析函数等

Spark2.0之后

入口:SparkSession(spark应用程序的一个整体入口),合并了SQLContext和HiveContext

SparkSQL核心抽象:DataFrame/Dataset type DataFrame = Dataset[Row] //type 给某个数据类型起个别名

SparkSQL DSL语法

SparkSQL除了支持直接的HQL语句的查询外,还支持通过DSL语句/API进行数 据的操作,主要DataFrame API列表如下:

select:类似于HQL语句中的select,获取需要的字段信息

where/filter:类似HQL语句中的where语句,根据给定条件过滤数据

sort/orderBy: 全局数据排序功能,类似Hive中的order by语句,按照给定字段进行全部 数据的排序

sortWithinPartitions:类似Hive的sort by语句,按照分区进行数据排序

groupBy:数据聚合操作

limit:获取前N条数据记录

SparkSQL和Hive的集成

集成步骤:

-1. namenode和datanode启动

-2. 将hive配置文件软连接或者复制到spark的conf目录下面

$ ln -s /opt/modules/apache/hive-1.2.1/conf/hive-site.xml

or

$ cp /opt/modules/apache/hive-1.2.1/conf/hive-site.xml ./

-3. 根据hive-site.xml中不同配置项,采用不同策略操作

根据hive.metastore.uris参数

-a. 当hive.metastore.uris参数为空的时候(默认值)

将Hive元数据库的驱动jar文件添加spark的classpath环境变量中即可完成SparkSQL到hive的集成

-b. 当hive.metastore.uris非空时候

-1. 启动hive的metastore服务

./bin/hive --service metastore &

-2. 完成SparkSQL与Hive集成工作

-4.启动spark-SQL($ bin/spark-sql)时候 发现报错:

java.lang.ClassNotFoundException: org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver

at java.net.URLClassLoader$1.run(URLClassLoader.java:366)

at java.net.URLClassLoader$1.run(URLClassLoader.java:355)

at java.security.AccessController.doPrivileged(Native Method)

at java.net.URLClassLoader.findClass(URLClassLoader.java:354)

at java.lang.ClassLoader.loadClass(ClassLoader.java:425)

at java.lang.ClassLoader.loadClass(ClassLoader.java:358)

at java.lang.Class.forName0(Native Method)

at java.lang.Class.forName(Class.java:270)

at org.apache.spark.util.Utils$.classForName(Utils.scala:228)

at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:693)

at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:185)

at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:210)

at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:124)

at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

Failed to load main class org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.

You need to build Spark with -Phive and -Phive-thriftserver.

解决办法:将spark源码中sql/hive-thriftserver/target/spark-hive-thriftserver_2.11-2.0.2.jar拷贝到spark的jars目录下

完成。(查看数据库 spark-sql (default)> show databases; ,它操作的都是Hive)

编写两个简单的SQL

spark-sql (default)> select * from emp;

也可以做两张变的jion

spark-sql (default)> select a.*,b.* from emp a left join dept b on a.deptno = b.deptno;

可以对表进行一个缓存操作3

> cache table emp; #缓存操作

> uncache table dept; #清除缓存操作

> explain select * from emp; #执行计划

我们可以看到相应的Storage信息,执行完清除缓存操作后下面的Stages操作消失

启动一个Spark Shell,可以直接在shell里面编写SQL语句

$http:// bin/spark-shell

#可以在shell里面写sql

scala> spark.sql("show databases").show

scala> spark.sql("use common").show

scala> spark.sql("select * from emp a join dept b on a.deptno = b.deptno").show

用一个变量名称接收DataFrame

比如使用registerTempTable注册一个临时表。注:临时表是所有数据库公有的不需要指定数据库

scala> df.registerTempTable("table_regis01")

Spark应用依赖第三方jar包文件解决方案

在我们的4040页面Environment节点下的Classpath Entries节点里可以看到我们服务所依赖的jar包。http://hadoop01.com:4040/environment/

1.直接添加驱动jar到${SPARK_HOME}/jars

2. 使用参数--jars 添加本地jar包

./bin/spark-shell --jars jars/mysql-connector-java-5.1.27-bin.jar,/opt/modules/hive-1.2.1/lib/servlet-api-2.5.jar

添加多个本地jar的话,用逗号隔开

./bin/spark-shell --jars jars/mysql-connector-java-5.1.27-bin.jar,/opt/modules/hive-1.2.1/lib/*

注意:不能使用*去添加jar包,如果想要添加多个依赖jar,只能一个一个去添加

3. 使用参数--packages添加maven中的第三方jar文件

. bin/spark-shell --packages mysql:mysql-connector-java:5.1.28

可以使用逗号隔开给定多个,格式(groupId:artifactId:version)

(底层执行原理先从maven中央库下载本地没有的第三方jar文件到本地,jar文件会先下载到本地的/home/ijeffrey/.ivy2/jars目录下,最后通过spark.jars来控制添加classpath中)

--exclude-packages 去掉不需要的包

--repositories maven源,指定URL连接

4. 使用SPARK_CLASSPATH环境变量给定jar文件路径

编辑spark-env.sh文件

SPARK_CLASSPATH=/opt/modules/apache/spark-2.0.2/external_jars/* 外部jar的路径

5. 将第三方jar文件打包到最终的jar文件中

在IDEA中添加依赖jar到最终的需要运行的spark应用的jar中

SparkSQL的ThriftServer服务

ThriftServer底层就是Hive的HiveServer2服务,下面是客户端连接Hive Server2 方法的相关连接

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-JDBC

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+WindowingAndAnalytics #hiveserver2的配置

https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2

配置:

-1. ThriftServer服务运行的Spark环境必须完成SparkSQL和Hive的集成

-2. hive-site.xml中配置hiveserver2服务的相关参数

hive.server2.thrift.bind.port

10000

hive.server2.thrift.bind.host

hadoop01.com

-3. 启动hive的元数据服务

$ ./bin/hive --service metastore &

-4. 启动spark的thriftserver服务,也是一个SparkSubmit服务

$ sbin/start-thriftserver.sh

也可以看到相应的WEBUI界面,比之前的多了一个JDBC/ODBC Server

注意:如果需要启动Spark ThriftServer 服务,需要关闭hiveserver2 服务

SparkSQL的ThriftServer服务测试

-1. 查看进程是否存在

jps -ml | grep HiveThriftServer2

-2. 查看WEB界面是否正常

有JDBC/ODBC Server这个选项就是正常的

-3. 通过spark自带的beeline命令

./bin/beeline

-4. 通过jdbc来访问spark的ThriftServer接口

Spark中beeline的使用

$ bin/beeline #启动beeline

#可以使用!help查看相应的命令

beeline> !help

#如connect

beeline> !connect

Usage: connect [driver]

#这样可以多个用户连接

beeline> !connect jdbc:hive2://hadoop01.com:10000

#退出

beeline> !quit

连接成功,在4040 页面也可以看到我们连接的hive

注:如果报错

No known driver to handle "jdbc:hive2://hadoop01.com:10000"

说明缺少了hive的驱动jar,在我们编译好的源码中hive-jdbc-1.2.1.spark2.jar 找到并copy到spark的jars中

通过jdbc来访问spark的ThriftServer接口

向我们java连接mysql一样,我们使用scala来连接ThriftServer

package com.jeffrey

import java.sql.DriverManager

object SparkJDBCThriftServerDemo {

def main(args: Array[String]): Unit = {

//1 添加驱动

val driver = "org.apache.hive.jdbc.HiveDriver"

Class.forName(driver)

//2 构建连接对象

val url = "jdbc:hive2://hadoop01.com:10000"

val conn = DriverManager.getConnection(url,"ijeffrey","123456")

//3 sql 语句执行

conn.prepareStatement("use common").execute()

var pstmt = conn.prepareStatement("select empno,ename,sal from emp")

var rs = pstmt.executeQuery()

while (rs.next()){

println(s"empno = ${rs.getInt("empno")} " +

s"ename=${rs.getString("ename")} " +

s" sal=${rs.getDouble("sal")}")

}

println("---------------------------------------------------------------------------")

pstmt = conn.prepareStatement("select empno,ename,sal from emp where sal > ? and ename = ?")

pstmt.setDouble(1,3000)

pstmt.setString(2,"KING")

rs = pstmt.executeQuery()

while (rs.next()){

println(s"empno = ${rs.getInt("empno")} " +

s"ename=${rs.getString("ename")} " +

s" sal=${rs.getDouble("sal")}")

}

rs.close()

pstmt.close()

conn.close()

}

}

执行结果:

SparkSQL案例

案例一:SparkSQL读取HDFS上Json格式的文件

1. 将案例数据上传到HDFS上

样例数据在${SPARK_HOME}/examples/src/main/resources/*

2. 编写SparkSQL程序

启动一个spark-shell进行编写

scala> val path = "/spark/data/people.json"

scala> val df = spark.read.json(path)

scala> df.registerTempTable("tmp04") //通过DataFrame注册一个临时表

scala> spark.sql("show tables").show //通过SQL语句进行操作

scala> spark.sql("select * from tmp04").show

#saveAsTable 使用之前 先要use table

scala> spark.sql("select * from tmp04").write.saveAsTable("test01")

#overwrite 覆盖 append 拼接 ignore 忽略

scala> spark.sql("select * from tmp01").write.mode("overwrite").saveAsTable("test01")

scala> spark.sql("select * from tmp01").write.mode("append").gjlNjdrLXnsaveAsTable("test01")

scala> spark.sql("select * from tmp01").write.mode("ignore").saveAsTable("test01")

saveAsTable("test01")默认保存到一张不存在的表中(test01不是临时表),如果表存在的话就会报错

SaveMode四种情况:

Append:拼接

Overwrite: 重写

ErrorIfExists:如果表已经存在,则报错,默认就是这一种,存在即报错

Ignore:如果表已经存在了,则忽略这一步操作

除了spark.read.json的方式去读取数据外,还可以使用spark.sql的方式直接读取数据

scala> spark.sql("select * from json.`/spark/data/people.json` where age is not null").show

+---+------+

|age| name|

+---+------+

| 30| Andy|

| 19|Justin|

+---+------+

# hdfs上的路径使用`(反票号)引起来

案例二:DataFrame和Dataset和RDD之间的互相转换

在IDEA中集成Hive的话,需要将hive-site.xml文件放到resources目录下面

package com.jeffrey.sql

import java.util.Properties

import org.apache.spark.sql.{DataFrame, SaveMode, SparkSession}

object HiveJoinMySQLDemo {

def main(args: Array[String]): Unit = {

System.setProperty("hadoop.home.dir","D:\\hadoop-2.7.3")

// 1.构建SparkSession

val warehouseLocation = "/user/hive/warehouse"

val spark = SparkSession

.builder()

.master("local") //如果放到集群运行需要注释掉

.appName("RDD 2 DataFrame")

.config("spark.sql.warehouse.dir",warehouseLocation)

.enableHiveSupport()

.getOrCreate()

import spark.implicits._

import spark.sql

val url = "jdbc:mysql://hadoop01.com:3306/test"

val table = "tb_dept"

val props = new Properties()

props.put("user","root")

props.put("password","123456")

// 1.Hive表数据导入到MySQL中 在shell中可以使用paste写多行

spark.read.table("common.dept")

.write

.mode(SaveMode.Overwrite)

.jdbc(url,table,props)

// 2.Hive和MySQL的join操作

//2.1 读取MySQL的数据

val df: DataFrame = spark

.read

.jdbc(url,table,props)

df.createOrReplaceTempView("tmp_tb_dept")

//2.1 数据聚合

spark.sql(

"""

|select a.*,b.dname,b.loc

|from common.emp a

|join tmp_tb_dept b on a.deptno = b.deptno

""".stripMargin).createOrReplaceTempView("tmp_emp_join_dept_result")

spark.sql("select * from tmp_emp_join_dept_result").show()

// 对表进行缓存的方法

spark.read.table("tmp_emp_join_dept_result").cache()

spark.catalog.cacheTable("tmp_emp_join_dept_result")

//输出到HDFS上

// 方法一

/*spark

.read

.table("tmp_emp_join_dept_result")

.write.parquet("/spark/sql/hive_join_mysql")*/

// 方法二

spark

.read

.table("tmp_emp_join_dept_result")

.write

.format("parquet")

.save(s"hdfs://hadoop01.com:8020/spark/sql/hive_join_mysql/${System.currentTimeMillis()}")

//输出到Hive中,并且是parquet格式 按照deptno分区

spark

.read

.table("tmp_emp_join_dept_result")

.write

.format("parquet")

.partitionBy("deptno")

.mode(SaveMode.Overwrite)

.saveAsTable("hive_emp_dept")

println("------------------------------------------------------------")

spark.sql("show tables").show()

//清空缓存

spark.catalog.uncacheTable("tmp_emp_join_dept_result")

}

}

可以打成jar文件放在集群上执行

bin/spark-submit \

--class com.jeffrey.sql.HiveJoinMySQLDemo \

--master yarn \

--deploy-mode client \

/opt/datas/jar/hivejoinmysql.jar

bin/spark-submit \

--class com.jeffrey.sql.HiveJoinMySQLDemo \

--master yarn \

--deploy-mode cluster \

/opt/datas/logAnalyze.jar

以上即使SparkSQL的基本使用。

SparkSQL的函数

HIve支持的函数,SparkSQL基本都是支持的,SparkSQL支持两种自定义函数,分别是:UDF和UDAF,两种函数都是通过SparkSession的udf属性进行函数的注册使用的;SparkSQL不支持UDTF函数的 自定义使用。

☆ UDF:一条数据输入,一条数据输出,一对一的函数,即普通函数

☆ UDAF:多条数据输入,一条数据输出,多对一的函数,即聚合函数

下一篇会写一下SparkSQL自定义函数的案例以及其关于SparkSQL其他的案例 ^_^

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:典型的RS485端口防护电路
下一篇:麦聪DaaS平台V3.6.1 GA:全面支持华为等数据中台和大数据平台
相关文章

 发表评论

暂时没有评论,来抢沙发吧~