c语言sscanf函数的用法是什么
326
2022-11-17
一种32位Arm架构的微处理器详细介绍
来源:内容由半导体行业观察(ID:icbank)编译自「nature」
微处理器现在已经深入到我们的文化中,已经成为一项元发明——也就是说,它是一种可以让其他发明得以实现的工具,最近的一项发明使COVID-19疫苗在创纪录的时间内开发所需的大数据分析成为可能。
TFT技术的目的不是要取代硅。随着这两种技术的不断发展,硅很可能在性能、密度和功率效率方面保持优势。然而,TFTs使电子产品具有新颖的外形因素和硅无法达到的成本点,从而极大地扩大了潜在应用的范围。
原生柔性微处理器有三个主要部件:(1)32位CPU,(2)包含CPU和CPU外设的32位处理器,(3)包含处理器、存储器和总线接口的片上系统(SoC),所有这些部件都是用金属氧化物TFT在柔性基板上制造的。本机灵活的32位处理器源自支持Armv6-M架构的Arm Cortex-M0+处理器(一组80多条指令)和现有的软件开发工具链(例如,编译器、调试器、连接器、集成开发环境等)。整个灵活的SoC被称为PlasticARM,能够从其内部内存运行程序。PlasticARM包含18334个NAND2等效栅极,这使其成为迄今为止在柔性基片上使用金属氧化物tft制造的最复杂的FlexIC(至少比以前的集成电路复杂12倍)。
PlasticARM系统架构
PlasticARM的芯片架构如下图所示。它是一种SoC,包括源自32位Arm Cortex-M0+处理器产品的32位处理器、存储器、系统互连结构和接口块以及外部总线接口。
PlasticARM架构和特性
a,SoC架构,显示了内部结构、处理器和系统外设。处理器包含一个32位的Arm Cortex-M CPU和一个嵌套向量中断控制器(NVIC),并通过互连结构(AHB-LITE)连接到它的内存。最后,外部总线接口提供了通用输入输出(GPIO)接口,用于芯片外与测试框架通信。
c,PlasticARM的模具布局,,表示Cortex-M处理器、ROM和RAM等白框中的关键块。
d,PlasticARM的模具显微图,显示模具和核心区域的尺寸。
上图b显示了PlasticARM中使用的Cortex-M与Arm Cortex-M0+的比较。虽然PlasticARM中的Cortex-M处理器不是一个标准产品,但它实现了支持16位Thumb和32位Thumb指令集架构的一个子集的Armv6-M架构,因此它与同一架构家族中的所有Cortex-M类处理器(包括Cortex-M0+)都是二进制兼容的。
PlasticARM中的Cortex-M和Cortex-M0+之间的关键区别在于,我们将SoC中RAM的特定部分分配给CPU寄存器(约64字节),并将它们从CPU移动到PlasticARM中Cortex-M中的RAM,而Cortex-M0+中的寄存器仍保留在其CPU中。通过消除CPU中的寄存器,并使用现有RAM作为寄存器空间,以较慢的寄存器访问为代价,实现了CPU面积的大幅缩减(约3倍)。
结果
测试程序
a,一个简单的累加程序从ROM中读取值并将它们相加。如果总和与预期值匹配,则会向测试仪读取的GPIO输出引脚发送确认信号。该测试使用加载、添加、比较和分支指令。
b,一组32位整数值被即时写入RAM并在检查读取值与预期值的同时将它们读回。如果所有写入的值都被正确读取,则会向GPIO输出引脚发送确认信号。该测试使用加载、存储、添加、移位、逻辑、比较和分支指令。
c,从测试仪通过GPIO输入引脚连续读取一个值。该值被一个常量值屏蔽。如果屏蔽结果为1,则计数器递增。如果为0,则计数器复位。如果计数器值等于预期值,则会向GPIO输出引脚发送确认信号。该测试使用加载、存储、添加、逻辑、比较和分支指令。斜体字表示测试程序中的变量;粗体和大写的术语是引脚和存储。
表1:用金属氧化物TFT构建的柔性集成电路的优点 任何电阻负载技术的一个关键挑战是功耗。我们预计正在开发的低功耗单元库将支持更高的复杂性,高达约100000个门。迁移到超过1000000个门可能需要互补金属氧化物半导体(CMOS)技术。
结论
我们报道了一种柔性32位微处理器PlasticARM,采用0.8μm金属氧化物TFT技术制作。我们已经演示了一个SoC的功能,它有一个32位Arm处理器制作在一个灵活的衬底上。它可以利用现有的软件/工具支持(比如编译器),因为它与Armv6-M架构中的Arm Cortex-M类处理器兼容,所以不需要开发软件工具链。最后,据我们所知,它是目前为止用金属氧化物tft制作的最复杂的柔性集成电路,包含超过18000个栅极,至少比以前最好的集成电路高12倍。 我们设想,PlasticARM将率先开发低成本、完全灵活的智能集成系统,使“万物互联”成为可能,包括在未来10年将超过一万亿无生命物体集成到数字世界中。为日常用品提供超薄、兼容、低成本、天生灵活的微处理器将带来创新,从而带来各种研究和商业机会。
方法
执行
FlexLogIC工艺是NMOS工艺,因此依赖电阻负载将单元输出拉向电源以驱动逻辑1。因此,单元输出上升时间比下降时间慢得多,而且这种不对称性会影响性能,尤其是对于重载网络。为了改善关键网络(例如时钟)的时序,我们添加了带有有源晶体管上拉的缓冲器。虽然这些有源上拉增加了少量的面积,但它们确实具有降低静态功耗的额外好处。具有上拉电阻和有源晶体管上拉的缓冲器的布局和模拟传输特性如图2所示。 这个简单的标准单元库随后被成功用作目标技术,使用基于行业标准电子设计自动化工具的典型集成电路设计流程来实现PlasticARM SoC。扩展数据表1显示了标准单元库内容和单元使用信息。 由于我们还没有专用的静态随机存取存储器FlexIC,我们通过将一些修改过的标准单元小心地放置在一个平铺的阵列中,通过邻接连接形成一个32×32位的存储器(这个块可以在图1c中的芯片布局)。 FlexLogIC技术(见扩展数据表2)有四个可路由的金属层,其中只有较低的两层在标准单元内使用。这使得最上面的两层金属层可以用于标准电池之间的互连,然后可以在相邻电池的顶部进行路由,从而大大提高了总体栅极密度,约为每平方毫米300个栅极。
制造
扩展数据表2中总结了工艺参数和TFT参数的统计变化.FlexLogIC是一种专有的200毫米晶圆半导体制造工艺,可创建金属氧化物薄膜晶体管和电阻器的图案层,根据FlexIC设计将四个可布线(无金)金属层沉积在柔性聚酰亚胺基板上。FlexIC设计的重复实例是通过运行多个薄膜材料沉积、图案化和蚀刻序列来实现的。为了便于操作并允许使用行业标准工艺工具并实现亚微米图案化特征(低至0.8μm),柔性聚酰亚胺基板在生产开始时旋涂到玻璃上。该工艺已经过优化,以确保在20毫米的横向距离内厚度变化基本上小于3%。薄膜材料沉积是通过物理气相沉积、原子层沉积和溶液处理(例如旋涂)的组合实现的。基板处理条件已经过精心优化,以最大限度地减少薄膜应力和基板弯曲。使用光刻5倍步进器工具实现特征图案化,该工具对在200毫米直径晶圆上的多个实例重复的镜头进行成像。
每个镜头都是单独聚焦的,这进一步补偿了旋铸薄膜内的任何厚度变化。技术测量是使用过程控制监控结构进行的。使用光刻5倍步进器工具实现特征图案化,该工具对在200毫米直径晶圆上的多个实例重复的镜头进行成像。每个镜头都是单独聚焦的,这进一步补偿了旋铸薄膜内的任何厚度变化。技术测量是使用过程控制监控结构进行的。使用光刻5倍步进器工具实现特征图案化,该工具对在200毫米直径晶圆上的多个实例重复的镜头进行成像。每个镜头都是单独聚焦的,这进一步补偿了旋铸薄膜内的任何厚度变化。技术测量是使用过程控制监控结构进行的。
模拟、测试和验证
如果值匹配,将两个脉冲的短脉冲发送到GPIO[0],如图3a扩展数据所示。如果值不同,扩展数据图3b中GPIO[0]上脉冲的周期和占空比会增加。在第二个测试中(图2b),将数据写入RAM,读回并进行比较。如果数据在从RAM中写入或读取时没有损坏,则3个脉冲的短脉冲发送到GPIO[0],如图3a中的扩展数据所示。如果数据被破坏,GPIO[0]上脉冲的周期和占空比会像以前一样增加。在最后的测试中(图2c),处理器进入一个无限循环并测量GPIO输入引脚[1]上应用'1'的时间。如果GPIO[1]保持在'1'而没有任何故障,GPIO[0]从'0'变为'1'。PlasticARM的时钟频率为20khz。由于它不使用任何计时器,软件中选择了一个值来表示GPIO[1]信号在20khz工作时保持在'1'约1秒。在扩展数据图3a的模拟中,该值对应于20,459个时钟周期,在20 kHz时产生1.02295 s。 制造完成后,PlasticARM在晶圆探针台上进行测试,同时仍连接到玻璃载体上。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~