入门推荐系统必读

网友投稿 264 2022-11-15

入门推荐系统必读

【排序】大规模稀疏线性排序模型FTRL工程实现 Ad click prediction: a view from the trenches (LR融合模型 Practical Lessons from Predicting Clicks on Ads at Facebook(Factorization Machines(Wide & Deep Learning for Recommender Systems(Deep Interest Network for Click-Through Rate Prediction(Amazon.com recommendations: item-to-item collaborative filtering(Item2vec: Neural Item Embedding for Collaborative Filtering(Sampling-Bias-Corrected Neural Modeling for Large Corpus Item Recommendations(DNN Deep neural networks for YouTube recommendations(Multi-Interest Network with Dynamic Routing for Recommendation at Tmall(The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing Summaries(https://cs.cmu.edu/~jgc/publication/The_Use_MMR_Diversity_Based_LTMIR_1998.pdf)

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:创基Type-C分线器定制厂家全新技术吸引用户体验
下一篇:Manifold Mixup 摘要速览
相关文章

 发表评论

暂时没有评论,来抢沙发吧~