Spark数据倾斜的产⽣和解决办法?

网友投稿 235 2022-11-15

Spark数据倾斜的产⽣和解决办法?

什么是数据倾斜

Spark 中的数据倾斜问题主要指shuffle过程中出现的数据倾斜问题,是由于不同的key对应的数据量不同导致的不同task所处理的数据量不同的问题。 例如,reduce点一共要处理100万条数据,第一个和第二个task分别被分配到了1万条数据,计算5分钟内完成,第三个task分配到了98万数据,此时第三个task可能需要10个小时完成,这使得整个Spark作业需要10个小时才能运行完成,这就是数据倾斜所带来的后果。

注意,要区分开数据倾斜与数据量过量这两种情况:

数据倾斜是指少数task被分配了绝大多数的数据,因此少数task运行缓慢;数据过量是指所有task被分配的数据量都很大,相差不多,所有task都运行缓慢。

****数据倾斜的表现: Spark 作业的大部分 task 都执行迅速,只有有限的几个task执行的非常慢,此时可能出现了数据倾斜,作业可以运行,但是运行得非常慢; Spark 作业的大部分task都执行迅速,但是有的task在运行过程中会突然报出OOM,反复执行几次都在某一个task报出OOM错误,此时可能出现了数据倾斜,作业无法正常运行。 定位数据倾斜问题: 查阅代码中的shuffle算子,例如reduceByKey、countByKey、groupByKey、join等算子,根据代码逻辑判断此处是否会出现数据倾斜; 查看 Spark 作业的 log 文件,log 文件对于错误的记录会精确到代码的某一行,可以根据异常定位到的代码位置来明确错误发生在第几个stage,对应的 shuffle 算子是哪一个;

解决办法

1.聚合原数据

****避免shuffle过程

数据倾斜大部分都是shuffle引起的,我不让它shuffle不就行了 累加器就可以避免shuffle操作

绝大多数情况下,Spark 作业的数据来源都是 Hive 表,这些 Hive 表基本都是经过 ETL 之后的昨天的数据。 为了避免数据倾斜,我们可以考虑避免 shuffle 过程,如果避免了shuffle过程,那么从根本上就消除了发生数据倾斜问题的可能。 我们可以先在Hive表中对数据进行聚合,列如按照key进行分组, 将当前的Key对应的value用特殊的格式拼接到一起拼接成字符串,这样一个key就只有一条数据了,再去拿数据的时候.这时候数据量就不会那么大了,只是这个value字符串会很大.

比如说hive原来的数据是 aaa : 111 ,bbb : 111 ,aaa : 222 拼接之后变成: aaa : 111,222 , bbb:111

这样的数据在Spark作业的时候只需要针对Value来处理就行了.,只需要进行map操作即可,无需再进行任何的shuffle操作。通过上述方式就避免了执行shuffle操作,也就不可能会发生任何的数据倾斜问题。

****2.****缩小key粒度(增大数据倾斜可能性,降低每个task的数据量)

key的数量增加,可能使数据倾斜更严重。

3. 增大key粒度(减小数据倾斜可能性,增大每个task****的数据量) 如果没有办法对每个key聚合出来一条数据,在特定场景下,可以考虑扩大key的聚合粒度。 例如,目前有10万条用户数据,当前key的粒度是(省,城市,区,日期),可能会出现这种情况,就是有的区数据量太大,有的区数据量不大.

现在我们考虑扩大粒度,将key的粒度扩大为(省,城市,日期),这样的话,key的数量会减少,key之间的数据量差异也有可能会减少,由此可以减轻数据倾斜的现象和问题。(此方法只针对特定类型的数据有效,当应用场景不适宜时,会加重数据倾斜)

2.过滤导致倾斜的Key

这种方案简单粗暴,比如说在统计的时候因为某些key导致数据倾斜了,那么完全可以把这个key从当前的rdd里面过滤掉.

有可能数据清洗的时候符合清洗规则,比如说我过滤非法数据的时候,我没有给一些数据清洗掉,比如说访问失败啥的.这些数据没有被清洗掉,在计算的时候就产生数据倾斜了,这个时候我们就可以过滤掉这些非法的数据.

3.提高shuffle操作中的reduce并行度[了解,这种方案不好]

当方案一和方案二对于数据倾斜的处理没有很好的效果时,可以考虑提高shuffle过程中的reduce端并行度,reduce端并行度的提高就增加了reduce端task的数量,那么每个task分配到的数据量就会相应减少,由此缓解数据倾斜问题。

这种方式有点自欺欺人了,原本是2个task去处理,现在你改成20个task去处理,提高了并行度,这样没有从根本性的解决问题.

****1. reduce端并行度的设置 在大部分的shuffle算子中,都可以传入一个并行度的设置参数,比如reduceByKey(500),这个参数会决定shuffle过程中reduce端的并行度,在进行shuffle操作的时候,就会对应着创建指定数量的reduce task。 对于Spark SQL中的shuffle类语句,比如group by、join等,需要设置一个参数,即spark.sql.shuffle.partitions,该参数代表了shuffle read task的并行度,该值默认是200,对于很多场景来说都有点过小。 增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据。 举例来说,如果原本有5个key,每个key对应10条数据,这5个key都是分配给一个task的,那么这个task就要处理50条数据。而增加了shuffle read task以后,每个task就分配到一个key,即每个task就处理10条数据,那么自然每个task的执行时间都会变短了。 ****2. reduce端并行度设置存在的缺陷 提高reduce端并行度并没有从根本上改变数据倾斜的本质和问题(方案一和方案二从根本上避免了数据倾斜的发生),只是尽可能地去缓解和减轻shuffle reduce task的数据压力,以及数据倾斜的问题,适用于有较多key对应的数据量都比较大的情况。 该方案通常无法彻底解决数据倾斜,因为如果出现一些极端情况,比如某个key对应的数据量有100万,那么无论你的task数量增加到多少,这个对应着100万数据的key肯定还是会分配到一个task中去处理,因此注定还是会发生数据倾斜的。所以这种方案只能说是在发现数据倾斜时尝试使用的第一种手段,尝试去用最简单的方法缓解数据倾斜而已,或者是和其他方案结合起来使用。 在理想情况下,reduce端并行度提升后,会在一定程度上减轻数据倾斜的问题,甚至基本消除数据倾斜;但是,在一些情况下,只会让原来由于数据倾斜而运行缓慢的task运行速度稍有提升,或者避免了某些task的OOM问题,但是,仍然运行缓慢,此时,要及时放弃方案三,开始尝试后面的方案。

4.使用随机key实现双重聚合[用的比较多的]

当使用了类似于groupByKey、reduceByKey这样的算子时,可以考虑使用随机key实现双重聚合

当使用类似groupByKey、reduceByKey的时候,可以考虑给key添加前缀.比如说 key1的数据太多了, 你可以给这个key1前面添加两个随机数,比如说给 key1变成 1_key1 和 2_key1 这样就是两个key了, 然后两个key就是两个task来处理.处理完了之后再给 1_key1和2_key1 前面之前添加的随机数去掉, 这样这随机数对于结果来说是没用的.

去掉随机数之后就将结果进行聚合.

****原理: 首先,通过map算子给每个数据的key添加随机数前缀,对key进行打散,将原先一样的key变成不一样的key,然后进行第一次聚合,这样就可以让原本被一个task处理的数据分散到多个task上去做局部聚合; 随后,去除掉每个key的前缀,再次进行聚合。 此方法对于由groupByKey、reduceByKey这类算子造成的数据倾斜由比较好的效果,仅仅适用于聚合类的shuffle操作,适用范围相对较窄。 如果是join类的shuffle操作,还得用其他的解决方案。 此方法也是前几种方案没有比较好的效果时要尝试的解决方案。

5.将reduce join转换为map join[用的比较多]

正常情况下,join操作都会执行shuffle过程,并且执行的是reduce join,也就是先将所有相同的key和对应的value汇聚到一个reduce task中,然后再进行join。

普通join的过程如下图所示:

普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。

但是如果一个RDD是比较小的,则可以采用广播小RDD全量数据+map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作,也就不会发生数据倾斜。

(注意,RDD是并不能进行广播的,只能将RDD内部的数据通过collect拉取到Driver内存然后再进行广播)

****核心思想

不使用join算子进行连接操作,而使用Broadcast变量与map类算子实现join操作,进而完全规避掉shuffle类的操作,彻底避免数据倾斜的发生和出现。

将较小 RDD 中的数据直接通过collect算子拉取到Driver端的内存中来,然后对其创建一个Broadcast变量;

接着对另外一个RDD执行map类算子,在算子函数内,从Broadcast变量中获取较小RDD的全量数据,与当前RDD的每一条数据按照连接key进行比对,如果连接key相同的话,那么就将两个RDD的数据用你需要的方式连接起来。

根据上述思路,根本不会发生shuffle操作,从根本上杜绝了join操作可能导致的数据倾斜问题。

当join操作有数据倾斜问题并且其中一个RDD的数据量较小时,可以优先考虑这种方式,效果非常好。map join的过程如图:

****不适用场景分析

由于 Spark 的广播变量是在每个Executor中保存一个副本,如果两个RDD数据量都比较大,那么如果将一个数据量比较大的 RDD 做成广播变量,那么很有可能会造成内存溢出

6.sample采样对倾斜key单独进行join

在 Spark 中,如果某个RDD只有一个key,那么在shuffle过程中会默认将此key对应的数据打散,由不同的reduce端task进行处理。

所以, 当由单个key导致数据倾斜时,可有将发生数据倾斜的key单独提取出来,组成一个RDD,然后用这个原本会导致倾斜的key组成的RDD跟其他RDD单独join,此时,根据 Spark 的运行机制,此 RDD 中的数据会在shuffle阶段被分散到多个task中去进行join操作。倾斜key单独join的流程如图

****适用场景分析

对于RDD中的数据,可以将其转换为一个中间表,或者是直接使用countByKey()的方式,看一个这个RDD中各个key对应的数据量,此时如果你发现整个RDD就一个key的数据量特别多,那么就可以考虑使用这种方法。 当数据量非常大时,可以考虑使用sample采样获取10%的数据,然后分析这10%的数据中哪个key可能会导致数据倾斜,然后将这个key对应的数据单独提取出来。

****不适用场景分析 如果一个RDD中导致数据倾斜的key很多,那么此方案不适用

如果很多key都导致数据倾斜,那么直接用 解决方案7:使用随机数以及扩容进行join

7.使用随机数以及扩容进行join

如果在进行join操作时,RDD中有大量的key导致数据倾斜,那么进行分拆key也没什么意义,此时就只能使用最后一种方案来解决问题了,对于join操作,我们可以考虑对其中一个RDD数据进行扩容,另一个RDD进行稀释后再join。

我们会将原先一样的key通过附加随机前缀变成不一样的key,然后就可以将这些处理后的“不同key”分散到多个task中去处理,而不是让一个task处理大量的相同key。

这一种方案是针对有大量倾斜key的情况,没法将部分key拆分出来进行单独处理,需要对整个RDD进行数据扩容,对内存资源要求很高。

****核心思想

选择一个RDD,使用flatMap进行扩容,对每条数据的key添加数值前缀(1~N的数值),将一条数据映射为多条数据;(扩容)

选择另外一个RDD,进行map映射操作,每条数据的key都打上一个随机数作为前缀(1~N的随机数);(稀释)

****局限性

如果两个 RDD 都很大,那么将 RDD 进行 N倍 的扩容显然行不通; 使用扩容的方式只能缓解数据倾斜,不能彻底解决数据倾斜问题。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:大数据Hadoop之——数据采集存储到HDFS实战(Python版本)
下一篇:微型计算机和单片机的基本结构
相关文章

 发表评论

暂时没有评论,来抢沙发吧~