k-means——平面上100个样本点的聚类分析(通俗易懂)

网友投稿 219 2022-11-15

k-means——平面上100个样本点的聚类分析(通俗易懂)

1、k-means聚类的算法流程

2、一个形象的例子:讲述k-means聚类原理

1)将下面这四个点,分为两类

2)聚类流程如下

3、平面上100个点的k-means聚类分析

代码如下:

import numpy as np# 构造数据集x = np.linspace(0,99,100)y = np.linspace(100,199,100)aa = 0 # aa变量是为了记录,迭代次数k = 2 # 指定将数据分为几个类别n = len(x) # 数据集的个数 # 1、随机选取两个点,作为初始的类中心;center0 = np.array([x[0],y[0]])center1 = np.array([x[1],y[1]])dis = np.zeros([n,k+1])while aa >= 0: # 2、求各样本到各类中心的距离; for i in range(n): dis[i,0] = np.sqrt((x[i]-center0[0])**2+(y[i]-center0[1])**2) dis[i,1] = np.sqrt((x[i]-center1[0])**2+(y[i]-center1[1])**2) # 3、归类:将样本归类为,距离其最近的类中的所属类; dis[i,2] = np.argmin(dis[i,:2]) # 4、再次计算各类样本的均值,作为新的类中心; index0 = dis[:,2] == 0 index1 = dis[:,2] == 1 center0_new = np.array([x[index0].mean(),y[index0].mean()]) center1_new = np.array([x[index1].mean(),y[index1].mean()]) # 5、判断类中心,是否发生变化。如果发生变化,就回到第2步;否则,break退出循环; if all((center0 == center0_new) & (center1 == center1_new)): break center0 = center0_new center1 = center1_new aa += 1print(len(dis[dis[:,2] == 0]),len(dis[dis[:,2] == 1]))print(center0,center1,aa)

结果如下:

结果分析:

从上面的结果中可以看到,最终的数据被分为的两类,每一类各有50个点。同时我们求出了最终的类中心点,一个是(24,5,124,5),另一个是(74.5,174.5),并且还求出了最后的迭代次数为7,也就是说:初始类中心一共迭代了7次后,就不再发生变化了。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Java如何通过反射获取私有构造、私有对象、私有字段、私有方法
下一篇:mysql关系型数据库的学习
相关文章

 发表评论

暂时没有评论,来抢沙发吧~