linux cpu占用率如何看
220
2022-11-13
深度学习比较火热的情景下需要避免的三个坑
Three reasons that you should NOT use deep learning
深度学习在过去几年一直是人工智能领域最热门的话题。事实上,正是它激发了科学家、政府、大公司以及其他所有人对人工智能的极大新兴趣!这是一门很酷的科学,具有潜在的巨大的实用性和积极的应用。它正被用于金融、工程、娱乐、消费产品和服务等领域。
但是,所有应用都需要使用到深度学习吗?当我们开展一个新的项目时,我们需要不自觉地一开始就使用深度学习吗?
在有些情况下,使用深度学习是不合适的,我们需要选择一些别的方案。让我们来探讨一下这些情况吧。
(1)深度学习不适用于小数据集
为了获得高性能,深度网络需要非常大的数据集。标注的数据越多,模型的性能就越好。获得标注良好的数据既昂贵又耗时。雇佣人工手动收集图片并标记它们根本没有效率可言。在深度学习时代,数据无疑是最有价值的资源。
(2)深度学习运用于实践是困难且昂贵的
这也是很昂贵,不仅是因为需要获取数据和计算能力所需的资源,还因为需要雇佣研究人员。深度学习研究现在非常热门,所以这三项费用都非常昂贵。当你做一些定制化的事情时,你会花费大量的时间去尝试和打破常规。
(3)深层网络不易解释
深层网络就像是一个“黑盒子”,即使到现在,研究人员也不能完全理解深层网络的“内部”。深层网络具有很高的预测能力,但可解释性较低。由于缺乏理论基础,超参数和网络设计也是一个很大的挑战。
虽然最近有许多工具,如显著性映射(saliencymaps)和激活差异(activation differences),它们在某些领域非常有效,但它们并不能完全适用于所有应用程序。这些工具的设计主要用于确保您的网络不会过度拟合数据,或者将重点放在虚假的特定特性上。仍然很难将每个特征的重要性解释为深层网络的整体决策。
另一方面,经典的ML算法,如回归或随机森林,由于涉及到直接的特征工程,就很容易解释和理解。此外,调优超参数和修改模型设计的过程也更加简单,因为我们对数据和底层算法有了更深入的了解。当必须将网络的结果翻译并交付给公众或非技术受众时,这些内容尤其重要。我们不能仅仅说“我们卖了那只股票”或“我们在那个病人身上用了这药”是因为我们的深层网络是这么说的,我们需要知道为什么。不幸的是,到目前为止,我们所掌握的关于深度学习的所有证据或者解释都是经验主义的。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~