通用两通道串行器/解串器TLK3132的工作原理及应用

网友投稿 416 2022-11-11

通用两通道串行器/解串器TLK3132的工作原理及应用

2TLK3132工作原理

TLK3132是TI推出的一款通用两通道串行器/解串器(SERDES),采用90nm工艺,能满足一些低功耗的应用需求,内部功能模块如图1所示。SERDES Core的发送部分用于实现8位、9位或10位宽字的并串转换,然后通过一根电缆或印刷板(PCB)走线发送出去,而接收部分则将串行数据进行串并转换为8位、9位或10位宽的并行字。

图1 TLK3132内部功能框图

2.1 并行接口

图2 并行口等效框图

2.2串行接口

图3 串行接口AC耦合

2.3 8B/10B编解码及通道同步

在串行链路通信中,为了实现信号时钟的恢复,需要避免出现长串0和长串1,同时保持电路上正负电平平衡,能正确地交流耦合避免信号失真,需要传输信号中的0和1数量数目相等,因此业界广泛应用8B/10B编解码方法:实现8B到10B的映射(图4),即一个字节(8bits)用10bits来表示,从中挑选出连续0或者1个数不会超过3个,0和1的个数差不大于2 (最多6个’0’或’1’)。

为了实现信号流中0和1的个数相等,在设计编码时,针对每个原码设计了两个编码,如:十六进制字节0x3B,对应两个编码分别为110110 1001(1的个数多于0)和001001 1001(0的个数多于1),在发送过程中不断统计当前数据流中0和1的个数差,如果0的个数大于1的个数,则发送0X3B字节时取前面一种编码;反之,则取后面一种编码,这样就不断平衡数据流中0和1的个数,保持串行数据中0和1的数量相同。

图 4 8B/10B映射

串行通信中,除了有效数据外,还需要一些控制字符传送某些控制协议。因此,在8B/10编码中,包含下面两种信息:

1)D分组,用于传递有效业务数据;

2)K分组,用于传递控制信息等,如K28.5控制字符10B编码包含0011111010或1100000101(连续5个’1’或’0’,称为Comma,千兆以太网使用的8B/10B编码方案中Comma是唯一的),用于定位串行数据流中每10个bits组的边界,避免数据流出现错误时无法界定每10bit的边界,导致链路中断。

2.4时钟电路

SERDES实现的一个关键技术是时钟的产生和分布,图5是TLK3132芯片内部的时钟架构。时钟配置非常灵活,支持单端或差分参考时钟输入,同时包括多个高频锁相环电路:

1)高速SERDES Core包含了一个高频倍频器(用于产生高速串行数据)和一个基于相位内插的CDR(在接收端用于从串行数据中恢复时钟)。

3)PLL1、PLL2、PLL3和PLL4作为倍频器,和前级抖动滤除锁相环电路配合,分别产生适合的时钟频率以满足系统各个模块的需求。

图5 内部时钟架构

图6 TLK3132内部锁相环环路带宽

2.5 PRBS测试

TLK3132支持PRBS码的产生和验证,便于系统定位链路故障,提高设备的可维护性。TLK3132内部有两套PRBS测试方法,一个在SERDES Core内部(通过寄存器0x9011/0x9012配置),该测试一般是只针对生产测试,且控制性能受限,在电路设计中一般不用该功能;另一个是SERDES Core外面(图1所示),支持 PRBS测试多项式是 ,可以通过寄存器配置(0x10)或外部引脚PRBSEN逻辑控制打开或关闭。此外,PRBS验证时可通过GPO[1:0]管脚监控PRBS测试误码情况,也可访问寄存器0x1D读取误码数(当读取该寄存器后,将从新开始误码计数)。

2.6 MDIO接口和寄存器访问

TLK3132内部寄存器访问通过MDIO管理接口实现(遵循IEEE 802.3 Clause 22规格),包括管理数据时钟(MDC)和管理数据输入输出(MDIO)。由于Clause 22直接寻址寄存器空间限制,TLK3132增加了一些扩展寄存器,故支持两种寻址方式:

1)直接寻址:主要包括与物理层相关的链路配置,地址空间分布在0x00~0x1F,PA[0]的高低电平决定对TLK3132的CH0通道或CH1通道进行操作;

2)间接寻址:TLK3132的一些扩展功能访问,如内部时钟配置、I/O性能配置等。地址空间分布在0x9000~0x9900,不同通道的功能有独立的寄存器进行配置。通过间接地址访问寄存器,需要先把寄存器地址写到0x1E地址,然后把相应的控制字写到0x1F地址或从0x1F地址读取相应的寄存器值。

3 TLK3132在CPRI接口的应用

3.1 CPRI接口

CPRI接口在传输用户界面定义了物理层layer1和数据链路层layer2两层协议。在物理层中,将上层接入点的数据进行串并/并串转换,以及物理层的编解码(CPRI接口推荐采用8B/10B,遵循IEEE 802.3 2005 Clause36建议);在数据链路层,对上层接入点的I/Q数据、物理层协议数据、网络协议数据(包括以太网数据、高层数据链路协议数据)和厂家自定义的控制信息等进行相应的处理。

目前CPRI有三种建议的链路速率,分别是614.4Mbps、1228.8Mbps、2457.6Mbp。在发送侧,把I/Q数据、控制协议信息、同步信息等复用为CPRI帧结构信息,经过物理层的8B/10B编码后,通过光纤长距离传播(几公里到几十公里);在接收侧,CPRI帧信号经过串并转换后经过8B/10解码成相应的I/Q数据和控制协议信息,交由上层数据链路处理。

CPRI帧分成基本帧单元和超帧单元。基本帧单元的帧频是3.84MHz,包括16个字(表示为W=0…15,其中W0为控制字,后15个字为I/Q数据),根据不同的链路速率,字的长度分别为8bits、16bits(如图7所示)、32bits。超帧单元是由256个基本帧单元组成,其中,第1个基本帧单元里的控制字写入K28.5标志作为超帧的同步控制信息,其余的255个基本帧单元里的控制字包含控制和管理字(C&M)、厂商自定义控制字等,并预留一些控制字。

图7 线速率1228.8Mbps的CPRI基本帧结构

在高速数据链路通信中,抖动指标是非常关键的,CPRI接口相应推荐了高速串行信号的眼图和抖动规格。在SERDES发送侧,CPRI要求的眼图模板如图8所示。

图8 CPRI接口发送输出眼图模板(E.x.LV)

在CPRI接口的实现中,TLK3132完成高性能的串/并、并/串转换,以及CPRI帧的同步和8B/10B编解码,即CPRI接口物理层的相关功能实现。

3.2 应用例子

在该电路中,TLK3132恢复时钟送给PLL作为参考时钟,同时其参考时钟又来自PLL的输出时钟。为保证内部CDR可靠工作,TLK3132要求参考时钟跟输入高速串行数据的频偏控制在+/-200PPM以内,因此外围PLL在失锁情况下,必须保证本地振荡器的自由振荡频率要足够稳定,通常建议采用基于压控晶振的时钟方案。

图8 TLK3132在CPRI接口的典型应用

下面例子说明如何通过MDIO设置TLK3132相关寄存器的软件配置。假设:CH0和CH1通道串行速率分别为1228.8Mbps和2457.6Mbps、并行接口采用SDR接口并工作在NBI模式、使能内部8B/10B编解码器、差分参考输入122.888MHz时钟,内部抖动滤除锁相环关闭,则在TI的TLK3132评估板上参考软件配置如下。

START

CLAUSE 22 //选择CLAUSE 22模式

WRITE(00, 8000) //软件复位芯片,即对所有寄存器进行复位

READ(11, 3590, FFFF) // 验证MDIO 功能是否正常

WRITE(1E, 9100) //把0x3FF0写入0x9100寄存器,差分参考输入作为SERDES Core的参考时钟

WRITE(1F, 3FF0)

WRITE(1E, 9000) //高频倍频器的倍频系数设为10

WRITE(1F, 1515)

WRITE(1E, 9001) //设置CH0为1/2速—1228.8Mbps、CH1为全速—2457.6Mbps

WRITE(1F, 6060)

WRITE(10, 8400) //并行接收时钟选择各自通道的恢复时钟

WRITE(11, B197) //并口为SDR且工作在NBI模式、上升沿打数据、8B/10B使能

WRITE(1E, 9002) //设置CH0通道接收为交流耦合、自适应均衡

WRITE(1F, 1005)

WRITE(1E, 9004) //设置CH1通道接收为交流耦合、自适应均衡

WRITE(1F, 1005)

WRITE(1E, 900A) //设置CH0通道串行发送端的摆幅为1000mV,去加重为9.52% (0.87dB)

WRITE(1F, 0B21)

WRITE(1E, 900C) //设置CH1通道串行发送端的摆幅为1000mV,去加重为9.52% (0.87dB)

WRITE(1F, 0B21)

WRITE(10, 8C00) //数据通道复位

PAUSE(100) //等待芯片配置生效

WRITE(1E, 901B) //检查SERDES Core内部锁相环是否锁定

READ(1F, 0011, 0011)

STOP

3.3 实验测试

由于串行口速率高达1228.8Mbps和2457.6Mbps,对PCB的layout提出较大的挑战。同时TLK3132具有非常优秀的损耗补偿能力,可以调整最佳的去加重补偿等级,以得到最佳的信号完整性性能。

在3.2节的例子中,反复发送K28.5字节数据,实际测试到的TLK3132发送端眼图如图9和图10(分别对应的串行速率为1228.8Mbps和2457.6Mbps),抖动主要来源于随机噪声,眼宽均在0.9UI以上,具有非常优越的抖动性能(通过适当调整去加重能力补偿传输线FR4的损耗,以提高SI性能)。

图10 2457.6Mbps发送侧眼图(经5inches FR4走线,调整了最优去加重补偿)

4总结

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:使用GNS3来实现交换机的互联互通
下一篇:GNS3-1.3.10部署环境详细步骤(附带安装文件下载地址)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~