java怎么拦截某个对象
319
2022-11-10
USB接口演进历史
1996 年,众所周之的通用串行接口(USB)初次问世。当时,版本 1.0 的 USB 接口仅可在低速(LS)模式和全速(FS)模式下,分别提供 1.5 Mb/s 和 12 Mb/s 的速率。2000 年, USB2.0 面市。新的高速(HS)模式可提供高达 480 Mb/s 的速率,并且依然向下兼容低速模式和全速模式。
2. USB 3.0 系统概述
图1 USB3.0超高速度模式和USB2.0模式物理链路(在主机侧和器件侧实现了静电防护)
图2 USB3.0电缆结构和电缆衰减(差分模式)
为了支持 USB3.0 电缆所包含的全部线路,必须强制规定采用一种新的连接器形状。新的 USB3.0 连接器的基本要求是,必须向下兼容 USB2.0 连接器。从静电防护的角度而言,这导致标准 A连接器的超高速度模式线路很容易被静电击中(在主机侧和器件侧)。一种强有力的对策是在USB3.0 链路中实现高效的静电防护机制。
超高速数据传输系统面临的一个最为严峻的问题是,确保在接收端实现一定程度的信号完整性。高信号完整性对实现很低的误码率非常重要(譬如,对于 USB3.0 超级速度模式,典型误码率为 1E-12)。眼图表明了信号完整性的特性。
这些措施均有助于加快处于上升和下降边缘的信号的速度,从而得到张得更开的眼图(即,更高信号完整性)(请参阅图 3)。
图3发送端信号还原(3.5dB标准参数)和接收端线性均衡器(标准参数)
图4未经接收端均衡器处理之前的信号眼图(左图)与经接收端均衡器处理之后的信号眼图(右图)
超高速度链路和USB2.0传输链路采用了差分耦合90欧姆线路。链路内部的阻抗不匹配造成的信号反射会降低信号完整性。为了避免出现这种情况,包括 USB3.0 电缆在内的整个布局设计,应当实现 90 欧姆差分阻抗匹配。
为了使“削弱斜率”尽可能小,并且提供相同的线路延迟时间,所有差分耦合线路均必须为相同的长度。对于USB3.0电缆本身,这一点尤为重要。
较高“削弱斜率”会降低信号完整性,从而导致所谓的“差模共模信号转换”。所生产的共模信号会影响EMI测试的顺利进行。阻抗匹配的适当布局设计,能避免这些问题。
3. USB3.0 超高速度链路和 USB2.0 链路的静电防护布局设计提议
在整个 USB3.0 链路的布局设计中,应考虑下列因素:
(1)所有 PCB 线路和互连电缆均强制要求采用完全阻抗匹配的 90 欧姆差分设计
(2)必须最大限度地减少非差分耦合线路。非差分耦合线路会严重影响眼图内眼张开程度
(3)90欧姆差分耦合PCB线路的线路宽度和线路间隔不应太窄,以避免造成额外的损耗,并且这些线路应当足够结实,以便于生产。从生产的角度而言,差分线路的理想线路宽度为0.3毫米,线路间隔为0.2毫米。这会形成 200 微米的电介质高度(假设:FR4,且 er=4)
(4)差分耦合链路的正极和负极线路(包括USB3.0电缆)之间的延迟(线路长度)完全相同(最大限度地减小削弱斜率)。对于保持很高的信号完整性和避免生成共模信号,这一点很重要。
图 5 所示为兼具静电防护电路的 USB3.0 标准A连接器横截面布局设计示例。
4. 面向 USB3.0 的现代化静电防护策略
一方面,持续不断地减小芯片的各个组件的尺寸,是降低生产成本,扩展工作频率的根本。另一方面,这种微型化也产生了新的问题(如,容易发生静电击穿)。对提供可靠静电防护机制的要求与日俱增。
为了给 USB3.0 链路提供适当的系统级静电防护,静电防护器件(TVS 二极管)必须满足不同的要求。可参照 IEC61000-4-2标准,根据残余箝位电压以及 TVS 二极管对特定静电放电的响应,判断 TVS 二极管的静电防护性能。
TVS 二极管的一些特性,会影响其静电防护性能
最低导通电阻(R_on)(动态电阻(R_dynamic))
最低击穿电压(V_breakdown),专为该应用度身定制
根据经验,可以计算出箝位电压(V_clamp):
根据 TLP 测定图,可计算出动态电阻(参见图 6):
图 6 专为给 USB3.0 超高速度链路提供静电防护而量身定制的英飞凌 ESD3V3U4UL 的 TLP 测定结果
为了保护另外的USB2.0链路,TVS二极管必须提供稍高一些的反向工作电压/击穿电压。要支持全速模式和低速模式,必须提供更高的击穿电压,从而形成最高+5V 左右的信号振幅。英飞凌 ESD5V3U1U 和ESD5V3U2U系列可提供最低5.3V的反向工作电压(击穿电压:最低6V)和0.4pF的典型二极管电容值。
5.实现了静电防护的USB3.0超高速度链路的信号完整性
分别在实现了静电防护和未实现静电防护的情况下,对整个 USB3.0 超级速度链路执行了信号完整性模拟。(参见图 1 )
整个收发区具备 90 欧姆差分阻抗。考虑了发送端和接收端的寄生效应。测得数据表明了 USB3.0 电缆的状态。规定 USB3.0 电缆的最大长度为 3 米。
为了给USB3.0超高速度链路提供静电防护,在主机侧和器件侧均配置了英飞凌ESD3V3U4ULC。ESD3V3U4ULC具备卓越的静电防护性能,并且二极管电容(二极管对地)极低,典型值为 0.5pF。在模拟中,考虑了 USB3.0 超高速度链路的基本布局设计规则。(参见图 5)
在对整条USB3.0超高速度链路执行的信号完整性模拟中,按照USB3.0合规测试标准参数,实现了发送端信号还原和接收端均衡处理。分析了经接收端均衡器处理之后的超高速度信号的眼图。模拟所用误码率为 1E6。根据模拟结果,推导出误码率为 1E12 时的眼图张开程度(红色和蓝色轮廓线)。
分别在未配备 TVS 二极管(红色轮廓线)和配备了 TVS 二极管(ESD3V3U4ULC,蓝色轮廓线)的情况下,计算出眼图的张开程度。(参见图 7)
图 7在主机侧和器件侧配置和未配置ESD3V3U4ULC时的眼图
在主机侧和器件侧实现超低电容 TVS 二极管 ESD3V3U4ULC,眼图张开程度(轮廓线)会受到一定影响。虽然眼图张开程度会略微减小,但相比于 USB3.0 技术规范中规定的基准模式(红紫色轮廓线)而言,仍大出许多。
浴缸状曲线模拟详尽地表明了TVS二极管的作用。黑色刻度线所示为USB3.0技术规范中规定的误码率为10E12时,眼图基准模式的电压和时间(皮秒)参数。红色曲线为未配备 TVS 二极管时计算所得, 蓝色曲线为在主机侧和器件侧配置了 ESD3V3U4ULC 时计算所得。
图 8 配备/未配备 TVS 二极管时的电压和时间浴缸状曲线模拟
6 结语
精心设计USB3.0链路以实现最优系统级静电防护性能和毫厘不差的信号完整性,是一个强制性要求。要同时满足这两个要求,静电防护器件必须具备卓越的静电防护性能和很低的器件电容。采用“阵列”配置的英飞凌ESD3V3U4ULC,加上清楚明了的布局设计和高质量链路(USB3.0电缆),便能满足上述要求。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~