推荐一本中文PyTorch书籍——PyTorch中文手册

网友投稿 269 2022-11-10

推荐一本中文PyTorch书籍——PyTorch中文手册

因此,学习 PyTorch 大有裨益!

今天我们强烈推荐一本中文 PyTorch 书籍 ——PyTorch 中文手册 (pytorch handbook),并附上试读。这是一本开源的书籍,目标是帮助那些希望和使用 PyTorch 进行深度学习开发和研究的朋友快速入门,其中包含的Pytorch 教程全部通过测试保证可以成功运行。

开源地址:

书籍介绍

这是一本开源的书籍,目标是帮助那些希望和使用 PyTorch 进行深度学习开发和研究的朋友快速入门。

深度学习的技术在飞速的发展,同时 PyTorch 也在不断更新,且本人会逐步完善相关内容。

版本说明

由于 PyTorch 版本更迭,教程的版本会与 PyTorch 版本,保持一致。

目录

第一章: pytorch 入门

1. Pytorch 简介

2. Pytorch 环境搭建

3. PyTorch 深度学习:60 分钟快速入门 (官方)

张量

Autograd: 自动求导

训练一个分类器

4. 相关资源介绍

第二章 基础

第一节 PyTorch 基础

张量

自动求导

神经网络包 nn 和优化器 optm

数据的加载和预处理

第二节 深度学习基础及数学原理

深度学习基础及数学原理

第三节 神经网络简介

神经网络简介

第四节 卷积神经网络

卷积神经网络

第五节 循环神经网络

循环神经网络

第三章 实践

第一节 logistic 回归二元分类

logistic 回归二元分类

第二节 CNN:MNIST 数据集手写数字识别

CNN:MNIST 数据集手写数字识别

第三节 RNN 实例:通过 Sin 预测 Cos

RNN 实例:通过 Sin 预测 Cos

第四章 提高

第一节 Fine-tuning

Fine-tuning

第二节 可视化

visdom

第三节 fastai

第四节 数据处理技巧

第五节 并行计算

第五章 应用

第一节 Kaggle 介绍

第二节 结构化数据

第三节 计算机视觉

第四节 自然语言处理

第五节 协同过滤

第六章 资源

试读:Pytorch 简介、Pytorch 环境搭建

1.1 Pytorch 简介

1.1.1 PyTorch 的由来

很多人都会拿 PyTorch 和 Google 的 Tensorflow 进行比较,这个肯定是没有问题的,因为他们是最火的两个深度学习框架了。但是说到 PyTorch,其实应该先说 Torch。

1.1.2 Torch 是什么?

Torch 英译中:火炬

Torch 是一个与 Numpy 类似的张量(Tensor)操作库,与 Numpy 不同的是 Torch 对 GPU 支持的很好,Lua 是 Torch 的上层包装。

PyTorch 和 Torch 使用包含所有相同性能的 C 库:TH, THC, THNN, THCUNN,并且它们将继续共享这些库。

这样的回答就很明确了,其实 PyTorch 和 Torch 都使用的是相同的底层,只是使用了不同的上层包装语言。

注:LUA 虽然快,但是太小众了,所以才会有 PyTorch 的出现。

1.1.3 重新介绍 PyTorch

PyTorchisaPythonpackagethatprovidestwohigh-levelfeatures:Tensorcomputation(likeNumPy)withstrongGPUaccelerationDeepneuralnetworksbuiltonatape-basedautogradsystemYoucanreuseyourfavoritePythonpackagessuchasNumPy,SciPyandCythontoextendPyTorchwhenneeded.

PyTorch 是一个 Python 包,提供两个高级功能:

具有强大的 GPU 加速的张量计算(如 NumPy)

包含自动求导系统的的深度神经网络

1.1.4 对比 PyTorch 和 Tensorflow

1.1.5 再次总结

PyTorch 算是相当简洁优雅且高效快速的框架

设计追求最少的封装,尽量避免重复造轮子

算是所有的框架中面向对象设计的最优雅的一个,设计最符合人们的思维,它让用户尽可能地专注于实现自己的想法

大佬支持,与 google 的 Tensorflow 类似,FAIR 的支持足以确保 PyTorch 获得持续的开发更新

入门简单

所以如果以上信息有吸引你的内容,那么请一定要读完这本书:)

1.2 Pytorch 环境搭建

1.2.1 安装 Pytorch

anaconda 安装完成后可以开始创建环境,这里以 win10 系统为例。打开 Anaconda Prompt

需要说明的一点是如果使用清华源,可以直接添加 pytorch 源镜像去掉,并且去掉 - c pytorch这样才能使用镜像源。

验证输入 python 进入

importtorchtorch.__version__#得到结果'0.4.1'

1.2.2 配置 Jupyter Notebook

新建的环境是没有安装安装 ipykernel 的所以无法注册到 Jupyter Notebook 中,所以先要准备下环境

#安装ipykernelcondainstallipykernel#写入环境python-mipykernelinstall--namepytorch--display-name"PytorchforDeeplearning"

下一步就是定制 Jupyter Notebook

#切换回基础环境activatebase#创建jupyternotebook配置文件jupyternotebook--generate-config##这里会显示创建jupyter_notebook_config.py的具体位置

打开文件,修改

c.NotebookApp.notebook_dir=''默认目录位置c.NotebookApp.iopub_data_rate_limit=100000000这个改大一些否则有可能报错

1.2.3 测试

至此 Pytorch 的开发环境安装完成,可以在开始菜单中打开 Jupyter Notebook 在 New 菜单中创建文件时选择 Pytorch for Deeplearning创建 PyTorch 的相关开发环境了

1.2.4 问题解决

问题 1:启动 python 提示编码错误

删除 .python_history来源

问题 2 默认目录设置不起效

打开快捷方式,看看快捷方式是否跟这个截图一样,如果是则删除% USERPROFILE%改参数会覆盖掉 notebook_dir 设置,导致配置不起效

如果你还发现其他问题,请直接留言

1.3 PyTorch 深度学习:60 分钟快速入门 (官方)

目录

张量

Autograd: 自动求导本章是冲突的重灾区,建议阅读

神经网络

训练一个分类器

选读:数据并行处理 (多 GPU)

说明

本章中的所有图片均来自于 PyTorch 官网,版权归 PyTorch 所有.

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:apache缓存
下一篇:Apache压缩
相关文章

 发表评论

暂时没有评论,来抢沙发吧~