推荐系统入门之使用ALS算法实现打分预测

网友投稿 432 2022-11-09

推荐系统入门之使用ALS算法实现打分预测

简介

场景将基于机器学习PAI平台,指导您如何使用ALS算法实现用户音乐打分预测。

背景信息

ALS算法是基于模型的推荐算法,基本思想是对稀疏矩阵进行模型分解,评估出缺失项的值,以此来得到一个基本的训练模型。然后依照此模型可以针对新的用户和物品数据进行评估。ALS是采用交替的最小二乘法来算出缺失项的,交替的最小二乘法是在最小二乘法的基础上发展而来的。

从协同过滤的分类来说,ALS算法属于User-Item CF,也叫做混合CF,它同时考虑了User和Item两个方面。

矩阵A=矩阵X和矩阵Y的转秩的乘积

x的列表示和Y的横表示可以称之为ALS中的因子,这个因子是有隐含定义的,这里假设有3个因子,分别是性格、教育程度、爱好。A矩阵经过ALS分解出的X、Y矩阵可以分别表示成如下所示。

开通机器学习PAI服务

说明:本场景使用的机器学习PAI服务依赖于MaxCompute大数据计算服务,在运行实验时将会消耗大约2.5元的计算费用,请确保您的账户余额充足。

创建PAI Studio项目

PAI Studio底层计算依赖MaxCompute,如果您未开通过当前区域的MaxCompute,请按照页面提示去购买。

a. 单击购买。

创建实验

查看实验模板

在该模板中已经默认配置了实验的数据源和ALS矩阵分解组件的参数。

user:用户ID。item:音乐ID。score:user对item的评分。

运行实验

查看实验结果

本实验中会输出2张表,对应ALS算法中的X矩阵和Y矩阵。

user1:[-0.14220297,0.8327106,0.5352268,0.6336995,1.2326205,0.7112976,0.9794858,0.8489773,0.330319,0.7426911]item978130429:[0.2431642860174179,0.6019538044929504,0.4035401940345764,0.254305899143219,0.4056856632232666,0.46871861815452576,0.3701469600200653,0.3757922947406769,0.26486095786094666,0.37488409876823425]经计算,两个向量相乘的结果为2.7247730805432644,可以预测user1对音乐978130429的评分为2.7247730805432644。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Java实现简易画图板
下一篇:NVIDIA兑现承诺 良心之作!费米老架构诞生7年半 终于支持DX12
相关文章

 发表评论

暂时没有评论,来抢沙发吧~