机器学习:sklearn训练结果的保存和加载

网友投稿 232 2022-11-08

机器学习:sklearn训练结果的保存和加载

API sklearn.externals.joblib 文件格式:pkl 代码示例 from sklearn.datasets import load_boston from sklearn.externals import joblib from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler # 加载数据 boston = load_boston() # 训练集,测试集拆分 X_train, X_test, y_train, y_test = train_test_split( boston.data, boston.target, test_size=0.25) # 数据标准化处理 # 特征值 标准化 std_x = StandardScaler() X_train = std_x.fit_transform(X_train) X_test = std_x.transform(X_test) # 目标值 标准化 std_y = StandardScaler() y_train = std_y.fit_transform(y_train.reshape(-1, 1)) y_test = std_y.transform(y_test.reshape(-1, 1)) # 训练数据并序列化训练结果 # lr = LinearRegression() # lr.fit(X_train, y_train) # joblib.dump(lr, "boston.pkl") # 反序列化保存的训练结果 lr = joblib.load("boston.pkl") y_lr_predict = std_y.inverse_transform(lr.predict(X_test)) print(y_lr_predict)

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:机器学习:模型选择与调优交叉验证和网格搜索
下一篇:Mybatis如何获取最新插入数据的id
相关文章

 发表评论

暂时没有评论,来抢沙发吧~