Java深入了解数据结构之二叉搜索树增 插 删 创详解

网友投稿 225 2022-11-03

Java深入了解数据结构之二叉搜索树增 插 删 创详解

目录①概念②操作-查找③操作-插入④操作-删除1. cur.left == null2. cur.right == null3. cur.left != nuhttp://ll && cur.right != null⑤性能分析⑥完整代码

①概念

二叉搜索树又称二叉排序树,它或者是一棵空树**,或者是具有以下性质的二叉树:

若它的左子树不为空,则左子树上所有节点的值都小于根节点的值

若它的右子树不为空,则右子树上所有节点的值都大于根节点的值

它的左右子树也分别为二叉搜索树

②操作-查找

二叉搜索树的查找类似于二分法查找

public Node search(int key) {

Node cur = root;

while (cur != null) {

if(cur.val == key) {

return cur;

}else if(cur.val < key) {

cur = cur.right;

}else {

cur = cur.left;

}

}

return null;

}

③操作-插入

public boolean insert(int key) {

Node node = new Node(key);

if(root == null) {

root = node;

return true;

}

Node cur = root;

Node parent = null;

while(cur != null) {

if(cur.val == key) {

return false;

}else if(cur.val < key) {

parent = cur;

cur = cur.right;

}else {

parent = cur;

cur = cur.left;

}

}

//parent

if(parent.val > key) {

parent.left = node;

}else {

parent.right = node;

}

return true;

}

④操作-删除

删除操作较为复杂,但理解了其原理还是比较容易

设待删除结点为 cur, 待删除结点的双亲结点为 parent

1. cur.left == null

1. cur 是 root,则 root = cur.right

2. cur 不是 root,cur 是 parent.left,则 parent.left = cur.right

3. cur 不是 root,cur 是 parent.right,则 parent.right = cur.right

2. cur.right == null

1. cur 是 root,则 root = cur.left

2. cur 不是 root,cur 是 parent.left,则 parent.left = cur.left

3. cur 不是 root,cur 是 parent.right,则 parent.right = cur.left

第二种情况和第一种情况相同,只是方向相反,这里不再画图

3. cur.left != null && cur.right != null

需要使用替换法进行删除,即在它的右子树中寻找中序下的第一个结点(关键码最小),用它的值填补到被删除节点中,再来处理该结点的删除问题

当我们在左右子树都不为空的情况下进行删除,删除该节点会破坏树的结构,因此用替罪羊的方法来解决,实际删除的过程还是上面的两种情况,这里还是用到了搜索二叉树的性质

public void remove(Node parent,Node cur) {

if(cur.left == null) {

if(cur == root) {

root = cur.right;

}else if(cur == parent.left) {

parent.left = cur.right;

}else {

parent.right = cur.right;

}

}else if(cur.right == null) {

if(cur == root) {

root = cur.left;

}else if(cur == parent.left) {

parent.left = cur.left;

}else {

parent.right = cur.left;

}

}else {

Node targetParent = cur;

Node target = cur.right;

while (target.left != null) {

targetParent = target;

target = target.left;

}

cur.val = target.val;

if(target == targetParent.left) {

targetParent.left = target.right;

}else {

targetParent.right = target.right;

}

}

}

public void removeKey(int key) {

if(root == null) {

return;

}

Node cur = root;

Node parent = null;

while (cur != null) {

if(cur.val == key) {

remove(parent,cur);

return;

}else if(cur.val < key){

parent = cur;

cur = cur.right;

}else {

parent = cur;

cur = cur.left;

}

}

}

⑤性能分析

插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。

对有n个结点的二叉搜索树,若MnEIYYD每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度 的函数,即结点越深,则比较次数越多。

但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:

最优情况下,二叉搜索树为完全二叉树,其平均比较次数为:

最差情况下,二叉搜索树退化为单支树,其平均比较次数为:

⑥完整代码

public class TextDemo {

public static class Node {

public int val;

public Node left;

public Node right;

public Node (int val) {

this.val = val;

}

}

public Node root;

/**

* 查找

* @param key

*/

public Node search(int key) {

Node cur = root;

while (cur != null) {

if(cur.val == key) {

return cur;

}else if(cur.val < key) {

cur = cur.right;

}else {

cur = cur.left;

}

}

return null;

}

/**

*

* @param key

* @return

MnEIYYD */

public boolean insert(int key) {

Node node = new Node(key);

if(root == null) {

root = node;

return true;

}

Node cur = root;

Node parent = null;

while(cur != null) {

if(cur.val == key) {

return false;

}else if(cur.val < key) {

parent = cur;

cur = cur.right;

}else {

parent = cur;

cur = cur.left;

}

}

//parent

if(parent.val > key) {

parent.left = node;

}else {

parent.right = node;

}

return true;

}

public void remove(Node parent,Node cur) {

if(cur.left == null) {

if(cur == root) {

root = cur.right;

}else if(cur == parent.left) {

parent.left = cur.right;

}else {

parent.right = cur.right;

}

}else if(cur.right == null) {

if(cur == root) {

root = cur.left;

}else if(cur == parent.left) {

parent.left = cur.left;

}else {

parent.right = cur.left;

}

}else {

Node targetParent = cur;

Node target = cur.right;

while (target.left != null) {

targetParent = target;

target = target.left;

}

cur.val = target.val;

if(target == targetParent.left) {

targetParent.left = target.right;

}else {

targetParent.right = target.right;

}

}

}

public void removeKey(int key) {

if(root == null) {

return;

}

Node cur = root;

Node parent = null;

while (cur != null) {

if(cur.val == key) {

remove(parent,cur);

return;

}else if(cur.val < key){

parent = cur;

cur = cur.right;

}else {

parent = cur;

cur = cur.left;

}

}

}

}

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:网络层协议介绍
下一篇:交换机基本原理与配置
相关文章

 发表评论

暂时没有评论,来抢沙发吧~